20 Regression Tree
Understanding regression trees for environmental and spatial data modeling.
20.1 Introduction
In the context of spatial prediction and data modeling, regression trees represent a flexible, intuitive, and robust approach for dealing with non-linear relationships, missing values, and complex interactions between variables.
Unlike traditional regression models, which assume a specific mathematical form between predictors and the response, regression trees work by recursively splitting the data into increasingly homogeneous subsets based on the values of the predictor variables. These splits lead to a tree-like structure, where each terminal node (or “leaf”) corresponds to a predicted value.

Figure 20.1: General structure of regression tree.
This method has gained popularity across ecological, agricultural, and environmental sciences due to its interpretability, minimal assumptions, and ability to model intricate patterns — including threshold effects and interactions — without requiring prior data transformation or feature engineering. Although not inherently spatial, regression trees can be adapted for spatial data modeling by including coordinate variables or combining with geostatistical techniques.
20.2 Why is it called a “regression tree”?
Let’s break down the term “regression tree” into its two parts.
First, it is called a tree because the model is structured like a decision tree: it starts from a single root and branches out recursively based on “yes/no” or “greater/less than” questions about the predictor variables. Each split leads to a new branch, and each end-point (leaf) of the tree contains a group of data points with similar characteristics. In practice, it feels like playing a decision game:
- “Is the slope greater than 20%?”
- “Is NDVI less than 0.4?”
- and so on
Each question progressively refines the prediction.
Second, it is a regression tree because it is used to predict a continuous numeric outcome — such as soil organic carbon, mean temperature, or biomass — as opposed to a classification tree, which predicts categorical outcomes (e.g., species type, land cover class, see figure below).

Figure 20.2: Classification tree to predict land cover.
Within each leaf, the output is typically the average of the target variable for the observations falling in that group. In this sense, a regression tree is a way to learn “piecewise constant” functions — it doesn’t output a smooth mathematical equation, but a series of rule-based decisions that result in constant predictions for each region of the predictor space.
20.3 How does a regression tree work?
The core principle of a regression tree is a recursive binary partitioning of the data based on predictor variables. The algorithm searches for the optimal threshold in one of the variables that best splits the dataset into two groups, such that the variability within each group is minimized. This split is chosen by evaluating all possible thresholds for each variable and selecting the one that results in the greatest reduction of prediction error.
The most common criterion used for this purpose is the minimization of intra-node variance, i.e., the average squared deviation of the response values from their node mean. In other words, at each step, the algorithm seeks the split that creates child nodes that are as homogeneous as possible in terms of the target variable.
This process continues recursively until a stopping condition is met: for instance, a minimum number of observations in each leaf, or a minimum improvement in error reduction. However, if the tree is allowed to grow too deep, it may start to overfit the training data — that is, it memorizes noise or very specific patterns that do not generalize to new data. To prevent this, the tree can be pruned, i.e., simplified by cutting back some of the branches, often based on cross-validation or a complexity parameter, in order to strike a better balance between bias and variance.
20.4 Implementation in R
Regression trees can be implemented in R using the well-established rpart
package. Visualization can be handled with rpart.plot
.
20.4.1 Required packages
library(rpart) # for model fitting
library(rpart.plot) # for tree visualization
20.4.2 Import a dataset
Assuming we have a spatial dataset with covariates and a target variable:
BB.250 <- read.csv('datasets/BB.250.csv')
20.4.2.1 Dataset Overview
This dataset contains a variety of variables derived from laboratory analysis, remote sensing, and spatial modeling. A concise description of the variable groups is provided below:
- Target variables: SOC, pH, and Clay are laboratory-measured properties and serve as the prediction targets.
- Digital Elevation Model (DEM): Derived from LiDAR and photogrammetric data with a spatial resolution of 5 meters.
- Geophysical measurements: Apparent Electrical Resistivity (ERa) and Gamma Radiation (Total Counts) were collected in the field and interpolated using ordinary kriging.
- Reflectance Spectral Signals (RSS): Sentinel-2 spectral bands acquired over bare soil conditions.
- Vegetation Indices (VI): Indices such as NDVI and GNDVI derived from Sentinel-2 data during the vegetation season.
X | x_25833 | y_25833 | SOC_target | pH_target | Clay_target | Altitude | Slope | ERa | G_Total_Counts | pH_ISE | B02 | B03 | B04 | B05 | B06 | B07 | B08 | B8A | B11 | B12 | NDVI | GNDVI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 463123.2 | 5804705 | 0.84 | 6.3 | 5.1 | 72.55 | 0.2612495 | 283.88306 | 1170.5445 | 6.732892 | 2019 | 2368 | 2852 | 3143 | 3560 | 3624 | 3714 | 3797 | 4524 | 4550 | 0.4741913 | 0.4661191 |
2 | 463169.1 | 5804694 | 0.61 | 6.0 | 3.4 | 72.34 | 0.2425003 | 304.21622 | 1185.2359 | 6.733316 | 2010 | 2310 | 2798 | 2972 | 3141 | 3265 | 3526 | 3524 | 4711 | 4822 | 0.4374892 | 0.4382333 |
3 | 463144.1 | 5804738 | 0.79 | 6.2 | 4.1 | 70.45 | 0.1812496 | 406.82909 | 1256.4166 | 6.778458 | 1988 | 2310 | 2810 | 3081 | 3203 | 3352 | 3634 | 3650 | 4873 | 4876 | 0.4824103 | 0.4680924 |
4 | 463169.1 | 5804781 | 0.77 | 6.7 | 4.8 | 68.03 | 0.2049990 | 341.54785 | 1232.3249 | 6.761032 | 1972 | 2306 | 2798 | 3006 | 3136 | 3432 | 3622 | 3648 | 4883 | 4945 | 0.4607366 | 0.4642982 |
5 | 463169.1 | 5804868 | 0.65 | 5.9 | 2.8 | 65.49 | 0.1837492 | 405.41499 | 1257.7680 | 6.551815 | 2038 | 2368 | 2862 | 3103 | 4306 | 4521 | 3728 | 4727 | 3696 | 3468 | 0.3994159 | 0.4273699 |
6 | 463198.2 | 5804662 | 0.58 | 5.9 | 3.5 | 74.23 | 0.1199999 | 533.85242 | 1132.7383 | 6.668399 | 1992 | 2368 | 2802 | 3042 | 3194 | 3314 | 3540 | 3533 | 4677 | 4790 | 0.3997243 | 0.4084605 |
7 | 463219.1 | 5804694 | 0.65 | 6.3 | 4.0 | 71.59 | 0.2487507 | 909.92277 | 1131.9628 | 6.725732 | 2042 | 2346 | 2826 | 3053 | 3197 | 3363 | 3598 | 3598 | 4868 | 5031 | 0.3683481 | 0.3853984 |
8 | 463194.1 | 5804738 | 0.58 | 6.4 | 3.2 | 70.00 | 0.1700010 | 366.57248 | 1080.6674 | 6.782501 | 2012 | 2332 | 2820 | 2986 | 3107 | 3275 | 3584 | 3504 | 4738 | 4884 | 0.4045643 | 0.4168120 |
9 | 463219.1 | 5804781 | 0.66 | 6.4 | 3.9 | 67.06 | 0.2250004 | 434.28382 | 1133.3119 | 6.741455 | 1977 | 2302 | 2748 | 2983 | 3137 | 3273 | 3500 | 3471 | 4789 | 4919 | 0.4356174 | 0.4422226 |
10 | 463194.1 | 5804824 | 0.64 | 6.4 | 4.3 | 65.94 | 0.1324997 | 475.84408 | 1208.5534 | 6.676767 | 1958 | 2230 | 2742 | 3054 | 3234 | 3440 | 3520 | 3647 | 4890 | 5036 | 0.4456290 | 0.4433209 |
11 | 463219.1 | 5804868 | 0.73 | 6.4 | 3.8 | 64.05 | 0.1224990 | 438.88875 | 1237.7501 | 6.590428 | 1910 | 2182 | 2650 | 2664 | 2770 | 2960 | 3392 | 3241 | 4670 | 4819 | 0.4405844 | 0.4375111 |
12 | 463194.1 | 5804911 | 0.95 | 6.1 | 5.5 | 63.06 | 0.1562495 | 331.31542 | 1294.4736 | 6.541923 | 1845 | 2070 | 2450 | 2830 | 3623 | 3857 | 3202 | 4182 | 3968 | 3721 | 0.4912594 | 0.4736471 |
13 | 463219.1 | 5804954 | 1.01 | 6.6 | 4.2 | 61.28 | 0.1224995 | 338.62425 | 1304.2030 | 6.652365 | 1868 | 2090 | 2448 | 2680 | 2852 | 2959 | 3222 | 3213 | 4576 | 4711 | 0.5242091 | 0.5034483 |
14 | 463148.8 | 5804816 | 0.8 | 6.4 | 4.4 | 67.52 | 0.0800009 | 540.47264 | 1263.1579 | 6.679825 | 1956 | 2464 | 2814 | 3139 | 3962 | 4067 | 4256 | 4307 | 4223 | 4139 | 0.3861518 | 0.3799503 |
15 | 463274.1 | 5804622 | 0.62 | 6.2 | 3.0 | 74.47 | 0.0937500 | 208.93547 | 1093.6202 | 6.619129 | 1982 | 2310 | 2758 | 3060 | 3142 | 3383 | 3524 | 3584 | 4761 | 4806 | 0.4495173 | 0.4478588 |
16 | 463244.1 | 5804651 | 0.54 | 6.3 | 2.1 | 74.33 | 0.3012514 | 354.53489 | 1091.6328 | 6.641480 | 1966 | 2302 | 2752 | 3042 | 3129 | 3341 | 3492 | 3563 | 4741 | 4834 | 0.4039801 | 0.4110000 |
17 | 463269.1 | 5804694 | 0.52 | 6.5 | 2.6 | 70.56 | 0.2824993 | 502.64409 | 1064.3973 | 6.718485 | 1963 | 2252 | 2716 | 3000 | 3107 | 3257 | 3444 | 3512 | 4773 | 4944 | 0.4022263 | 0.4052614 |
18 | 463244.1 | 5804738 | 0.58 | 6.3 | 4.7 | 69.00 | 0.2587500 | 485.50856 | 1161.6833 | 6.761165 | 1975 | 2308 | 2770 | 3019 | 3156 | 3279 | 3530 | 3530 | 4859 | 5008 | 0.3899130 | 0.4115154 |
19 | 463269.1 | 5804781 | 0.67 | 6.0 | 2.9 | 66.04 | 0.1875000 | 444.01528 | 1083.5679 | 6.676435 | 1974 | 2280 | 2736 | 2995 | 3128 | 3300 | 3512 | 3513 | 4896 | 5032 | 0.4647090 | 0.4644499 |
20 | 463244.1 | 5804824 | 0.71 | 5.9 | 1.8 | 64.94 | 0.1937513 | 675.96647 | 1154.2355 | 6.613087 | 1943 | 2222 | 2692 | 2942 | 3075 | 3259 | 3460 | 3488 | 4849 | 5001 | 0.4637707 | 0.4588361 |
21 | 463269.1 | 5804868 | 0.78 | 5.5 | 3.7 | 63.23 | 0.1362500 | 561.34947 | 1225.7150 | 6.554564 | 1890 | 2148 | 2584 | 2660 | 2770 | 2977 | 3346 | 3216 | 4674 | 4836 | 0.4828080 | 0.4806867 |
22 | 463244.1 | 5804911 | 0.96 | 5.9 | 3.6 | 62.21 | 0.1562495 | 417.46456 | 1282.2523 | 6.647943 | 1784 | 2004 | 2354 | 2596 | 2738 | 2893 | 3042 | 3143 | 4562 | 4768 | 0.4909617 | 0.4694459 |
23 | 463269.1 | 5804954 | 0.93 | 6.8 | 4.6 | 60.41 | 0.1274996 | 261.55423 | 1227.9391 | 6.866014 | 1848 | 2046 | 2410 | 2545 | 2720 | 2852 | 3124 | 3073 | 4307 | 4483 | 0.5223775 | 0.4940972 |
24 | 463244.1 | 5804997 | 1.13 | 7.2 | 7.2 | 60.17 | 0.0924993 | 214.22471 | 1327.4956 | 6.861070 | 1788 | 2010 | 2360 | 2451 | 2605 | 2749 | 3002 | 2911 | 3926 | 4027 | 0.5403641 | 0.5184558 |
25 | 463262.6 | 5805028 | 1.36 | 6.8 | 6.9 | 59.14 | 0.1012497 | 136.53027 | 1350.7741 | 7.019144 | 1711 | 1866 | 2168 | 2361 | 2511 | 2725 | 2792 | 2953 | 3982 | 4011 | 0.5454386 | 0.5156008 |
26 | 463237.6 | 5805071 | 1.19 | 6.4 | 5.7 | 59.17 | 0.0549994 | 178.96968 | 1342.0250 | 6.878581 | 1667 | 1948 | 2152 | 2397 | 2910 | 3345 | 3336 | 3579 | 3737 | 3651 | 0.4664790 | 0.4473776 |
27 | 463262.6 | 5805115 | 1.75 | 7.2 | 9.3 | 58.68 | 0.1062498 | 87.62483 | 1406.8092 | 7.019442 | 1608 | 1800 | 2094 | 2185 | 2570 | 2655 | 2846 | 2896 | 3772 | 3686 | 0.6139351 | 0.5694487 |
28 | 463319.1 | 5804608 | 0.81 | 6.4 | 8.8 | 74.10 | 0.0962486 | 57.80892 | 1238.1165 | 6.670382 | 1892 | 2178 | 2636 | 2943 | 3051 | 3254 | 3254 | 3430 | 4598 | 4554 | 0.4856771 | 0.4765448 |
29 | 463294.1 | 5804651 | 0.66 | 5.8 | 2.4 | 72.18 | 0.3974991 | 514.80166 | 1056.4696 | 6.676565 | 2036 | 2364 | 2832 | 3014 | 3165 | 3306 | 3624 | 3529 | 4789 | 4838 | 0.4769028 | 0.4651011 |
30 | 463319.1 | 5804694 | 0.63 | 5.9 | 4.9 | 68.51 | 0.2425003 | 629.99310 | 1075.5188 | 6.777109 | 1980 | 2296 | 2764 | 2956 | 3079 | 3255 | 3544 | 3498 | 4800 | 4922 | 0.4438503 | 0.4424040 |
31 | 463294.1 | 5804738 | 0.61 | 6.5 | 3.8 | 67.23 | 0.2325001 | 589.01161 | 1109.2969 | 6.753284 | 1954 | 2224 | 2692 | 2986 | 3073 | 3259 | 3424 | 3494 | 4824 | 4959 | 0.4498991 | 0.4416583 |
32 | 463319.1 | 5804781 | 0.79 | 5.7 | 3.5 | 65.23 | 0.1312504 | 309.97155 | 1192.6653 | 6.650025 | 1968 | 2274 | 2720 | 2990 | 3099 | 3246 | 3478 | 3516 | 4844 | 4981 | 0.5283514 | 0.5068670 |
33 | 463294.1 | 5804824 | 0.81 | 5.4 | 3.2 | 64.16 | 0.1262498 | 655.00111 | 1205.6820 | 6.520656 | 1955 | 2248 | 2742 | 2980 | 3113 | 3273 | 3502 | 3513 | 4879 | 4999 | 0.5339806 | 0.5096356 |
34 | 463319.1 | 5804868 | 0.91 | 5.7 | 4.5 | 62.33 | 0.1725001 | 367.96985 | 1241.3692 | 6.517238 | 1890 | 2168 | 2608 | 2754 | 2883 | 3076 | 3404 | 3335 | 4763 | 4888 | 0.5224681 | 0.5008264 |
35 | 463294.1 | 5804911 | 0.96 | 5.7 | 4.7 | 60.95 | 0.2187505 | 350.15519 | 1292.8367 | 6.707912 | 1921 | 2130 | 2544 | 2674 | 2786 | 2939 | 3276 | 3203 | 4580 | 4766 | 0.5276663 | 0.5181266 |
36 | 463319.1 | 5804954 | 1.43 | 7.1 | 7.2 | 59.44 | 0.0587506 | 136.67012 | 1408.1845 | 7.004392 | 1827 | 1984 | 2306 | 2432 | 2542 | 2698 | 2970 | 2868 | 3903 | 3992 | 0.6195200 | 0.5852780 |
37 | 463294.1 | 5804997 | 1.48 | 7.1 | 6.7 | 59.03 | 0.1737499 | 115.22693 | 1326.0413 | 7.119768 | 1674 | 1820 | 2088 | 2385 | 2510 | 2668 | 2696 | 2827 | 3804 | 3902 | 0.6429232 | 0.6091815 |
38 | 463312.6 | 5805028 | 1.64 | 7.2 | 7.6 | 58.43 | 0.1037502 | 55.81483 | 1363.2977 | 7.286209 | 1634 | 1776 | 2042 | 2223 | 2345 | 2524 | 2632 | 2738 | 3950 | 3945 | 0.6517205 | 0.6151493 |
39 | 463287.6 | 5805071 | 1.85 | 7.3 | 10.8 | 58.36 | 0.0450001 | 77.63236 | 1339.8493 | 7.190218 | 1697 | 1869 | 2182 | 2324 | 2509 | 2707 | 2882 | 2919 | 4006 | 3956 | 0.6596882 | 0.6237653 |
40 | 463312.6 | 5805115 | 1.69 | 7.2 | 11.7 | 58.26 | 0.0525012 | 65.78011 | 1292.3300 | 7.213527 | 1610 | 1776 | 2046 | 2196 | 2375 | 2506 | 2692 | 2767 | 3922 | 3905 | 0.6601539 | 0.6215122 |
41 | 463287.6 | 5805158 | 1.39 | 7.1 | 9.4 | 58.87 | 0.1137505 | 83.23549 | 1320.5339 | 7.016883 | 1634 | 1842 | 2080 | 2224 | 2344 | 2485 | 2852 | 2756 | 4034 | 3892 | 0.5890183 | 0.5510801 |
42 | 463312.6 | 5805201 | 1.17 | 6.6 | 8.1 | 59.56 | 0.0787506 | 120.49092 | 1324.9824 | 6.910338 | 1704 | 1870 | 2182 | 2457 | 2512 | 2750 | 2974 | 3003 | 4304 | 4214 | 0.5649516 | 0.5329341 |
43 | 463312.6 | 5805288 | 0.89 | 6.9 | 6.0 | 59.87 | 0.0274997 | 320.48392 | 1338.5972 | 6.854764 | 1944 | 2238 | 2676 | 2721 | 4372 | 4869 | 3530 | 5017 | 3115 | 2854 | 0.4953011 | 0.4981691 |
44 | 463369.1 | 5804608 | 0.89 | 6.1 | 10.4 | 72.79 | 0.2174997 | 225.09859 | 1089.7800 | 6.762279 | 1872 | 2152 | 2584 | 2885 | 3018 | 3151 | 3262 | 3348 | 4459 | 4423 | 0.5095323 | 0.4862827 |
45 | 463344.1 | 5804651 | 0.71 | 6.4 | 7.9 | 70.04 | 0.3349991 | 531.28283 | 1068.2773 | 6.766811 | 2011 | 2310 | 2802 | 2963 | 3055 | 3287 | 3510 | 3460 | 4599 | 4714 | 0.4265641 | 0.4327957 |
46 | 463369.1 | 5804694 | 0.79 | 6.5 | 3.8 | 67.14 | 0.1900005 | 547.76121 | 1049.8085 | 6.793718 | 1908 | 2210 | 2640 | 2842 | 2966 | 3145 | 3342 | 3355 | 4655 | 4838 | 0.5256012 | 0.5049217 |
47 | 463344.1 | 5804738 | 0.84 | 6.2 | 4.0 | 65.98 | 0.1374998 | 401.30888 | 1125.6015 | 6.790218 | 1902 | 2206 | 2672 | 2872 | 2998 | 3164 | 3370 | 3394 | 4764 | 4888 | 0.4946183 | 0.4862506 |
48 | 463369.1 | 5804781 | 1.02 | 5.7 | 2.8 | 64.31 | 0.1162510 | 185.42679 | 1186.9914 | 6.680550 | 1924 | 2202 | 2618 | 2820 | 2952 | 3099 | 3332 | 3361 | 4589 | 4647 | 0.5504202 | 0.5277070 |
49 | 463344.1 | 5804824 | 0.77 | 5.7 | 4.9 | 63.60 | 0.1412506 | 254.36738 | 1154.7875 | 6.546160 | 1946 | 2190 | 2634 | 2867 | 2983 | 3142 | 3366 | 3406 | 4763 | 4876 | 0.5212557 | 0.5052580 |
50 | 463369.1 | 5804868 | 1.12 | 6.4 | 3.7 | 61.62 | 0.1587496 | 215.01121 | 1229.1417 | 6.606883 | 1939 | 2190 | 2624 | 2819 | 2928 | 3096 | 3364 | 3316 | 4650 | 4777 | 0.5443661 | 0.5196901 |
51 | 463344.1 | 5804911 | 1.01 | 6.7 | 4.8 | 60.06 | 0.1624999 | 285.99590 | 1270.4820 | 6.713407 | 1880 | 2104 | 2514 | 2562 | 2700 | 2851 | 3188 | 3058 | 4279 | 4325 | 0.5854939 | 0.5507156 |
52 | 463369.1 | 5804954 | 1.78 | 7.4 | 12.6 | 58.70 | 0.1225004 | 68.16069 | 1438.2642 | 7.048402 | 1737 | 1878 | 2142 | 2241 | 2362 | 2518 | 2726 | 2728 | 3781 | 3702 | 0.6663910 | 0.6153949 |
53 | 463344.1 | 5804997 | 1.61 | 7.2 | 10.5 | 58.53 | 0.0574999 | 79.78436 | 1489.6332 | 7.271537 | 1625 | 1796 | 2060 | 2262 | 2357 | 2500 | 2684 | 2722 | 3804 | 3803 | 0.6436129 | 0.6008962 |
54 | 463362.6 | 5805028 | 1.98 | 7.3 | 10.7 | 57.87 | 0.1137505 | 61.61947 | 1491.7545 | 7.377023 | 1574 | 1692 | 1926 | 2102 | 2205 | 2347 | 2560 | 2591 | 3868 | 3838 | 0.6615038 | 0.6076294 |
55 | 463337.6 | 5805071 | 1.96 | 7.4 | 8.7 | 57.89 | 0.0350003 | 70.41354 | 1304.4460 | 7.353888 | 1666 | 1827 | 2112 | 2294 | 2405 | 2576 | 2760 | 2826 | 3971 | 3963 | 0.6580003 | 0.6131830 |
56 | 463362.6 | 5805115 | 1.51 | 7.4 | 11.4 | 58.04 | 0.0937495 | 57.27010 | 1380.2259 | 7.211137 | 1643 | 1758 | 2028 | 2300 | 2404 | 2526 | 2650 | 2791 | 4078 | 4046 | 0.6408364 | 0.6074710 |
57 | 463337.6 | 5805158 | 1.26 | 6.9 | 12.1 | 58.97 | 0.1087489 | 75.33991 | 1327.4143 | 7.018883 | 1651 | 1862 | 2176 | 2242 | 2338 | 2523 | 2824 | 2760 | 4050 | 4018 | 0.5939948 | 0.5519542 |
58 | 463362.6 | 5805201 | 1.02 | 6.1 | 6.1 | 59.01 | 0.0387516 | 182.08780 | 1259.4245 | 6.805560 | 1836 | 2062 | 2404 | 2694 | 2838 | 3009 | 3216 | 3253 | 4591 | 4673 | 0.5250132 | 0.5093815 |
59 | 463337.6 | 5805244 | 1.15 | 6.4 | 6.6 | 59.19 | 0.0274992 | 187.69984 | 1370.8010 | 6.825978 | 1844 | 2088 | 2480 | 2840 | 2930 | 3185 | 3304 | 3418 | 4595 | 4624 | 0.5678887 | 0.5350615 |
60 | 463362.6 | 5805288 | 0.91 | 6.4 | 7.1 | 60.26 | 0.0874996 | 159.41856 | 1401.7567 | 6.817807 | 1969 | 2246 | 2722 | 2900 | 3036 | 3206 | 3452 | 3397 | 4539 | 4590 | 0.5227429 | 0.5069054 |
61 | 463337.6 | 5805331 | 0.97 | 6.3 | 6.7 | 59.97 | 0.0924988 | 248.06975 | 1371.9776 | 6.837788 | 1972 | 2246 | 2706 | 2839 | 3528 | 3756 | 3552 | 3974 | 3985 | 3801 | 0.5330487 | 0.5141700 |
62 | 463362.6 | 5805374 | 0.8 | 6.5 | 6.3 | 59.63 | 0.0899997 | 314.88365 | 1377.6456 | 6.785805 | 2016 | 2302 | 2758 | 3010 | 3209 | 3371 | 3604 | 3623 | 4668 | 4720 | 0.4768166 | 0.4780952 |
63 | 463394.1 | 5804564 | 0.83 | 6.1 | 3.3 | 70.63 | 0.2424984 | 497.93137 | 969.5480 | 6.796362 | 1868 | 2218 | 2694 | 2989 | 3116 | 3288 | 3496 | 3473 | 4610 | 4618 | 0.3595028 | 0.3734303 |
64 | 463419.1 | 5804608 | 0.8 | 6.3 | 6.6 | 71.17 | 0.3787508 | 117.75316 | 1194.7171 | 6.827658 | 1973 | 2244 | 2710 | 2920 | 3024 | 3187 | 3476 | 3391 | 4492 | 4514 | 0.4887417 | 0.4668842 |
65 | 463394.1 | 5804651 | 0.65 | 6.0 | 2.6 | 68.78 | 0.2399998 | 488.78637 | 1049.0889 | 6.799809 | 1944 | 2248 | 2704 | 2962 | 3102 | 3287 | 3510 | 3450 | 4744 | 4866 | 0.4501101 | 0.4381720 |
66 | 463419.1 | 5804694 | 0.84 | 5.9 | 5.3 | 66.97 | 0.0974989 | 280.66584 | 1109.4204 | 6.805694 | 1914 | 2208 | 2648 | 2864 | 2988 | 3164 | 3382 | 3386 | 4608 | 4668 | 0.5448635 | 0.5169992 |
67 | 463394.1 | 5804738 | 0.98 | 6.3 | 3.8 | 65.35 | 0.1250000 | 310.02624 | 1172.2114 | 6.780546 | 1930 | 2188 | 2628 | 2824 | 2956 | 3090 | 3308 | 3319 | 4566 | 4654 | 0.5606304 | 0.5325332 |
68 | 463419.1 | 5804781 | 1.1 | 6.3 | 8.0 | 63.72 | 0.1825008 | 121.17439 | 1244.2248 | 6.752487 | 1928 | 2248 | 2656 | 2846 | 2957 | 3128 | 3348 | 3354 | 4550 | 4576 | 0.5840203 | 0.5527584 |
69 | 463394.1 | 5804824 | 0.9 | 5.5 | 3.9 | 62.86 | 0.1137495 | 282.68969 | 1204.1554 | 6.611118 | 1954 | 2194 | 2676 | 2889 | 3001 | 3143 | 3398 | 3396 | 4661 | 4776 | 0.5891755 | 0.5561754 |
70 | 463419.1 | 5804868 | 0.97 | 6.4 | 8.1 | 61.15 | 0.1687493 | 115.83539 | 1229.2918 | 6.793893 | 1928 | 2180 | 2624 | 2790 | 2910 | 3071 | 3326 | 3298 | 4445 | 4580 | 0.5312449 | 0.5060494 |
71 | 463394.1 | 5804911 | 1.01 | 6.4 | 4.4 | 59.69 | 0.1249995 | 200.21414 | 1321.7875 | 6.863470 | 1881 | 2052 | 2414 | 2392 | 2522 | 2667 | 3030 | 2878 | 3853 | 3836 | 0.5855856 | 0.5479818 |
72 | 463419.1 | 5804954 | 1.78 | 7.1 | 9.0 | 58.26 | 0.0762501 | 69.07130 | 1256.0558 | 7.136433 | 1656 | 1794 | 2066 | 2151 | 2261 | 2424 | 2726 | 2649 | 3819 | 3796 | 0.6773406 | 0.6257233 |
73 | 463387.6 | 5804985 | 1.82 | 7.1 | 11.0 | 58.07 | 0.0437498 | 62.64422 | 1410.7650 | 7.221829 | 1616 | 1772 | 2060 | 2199 | 2298 | 2435 | 2678 | 2664 | 3875 | 3826 | 0.6537082 | 0.6031150 |
74 | 463412.6 | 5805028 | 3.16 | 7.4 | 12.3 | 57.41 | 0.0224996 | 55.93398 | 1335.1514 | 7.353502 | 1576 | 1730 | 1950 | 2124 | 2228 | 2371 | 2542 | 2579 | 3878 | 3852 | 0.6691604 | 0.6224078 |
75 | 463387.6 | 5805071 | 2.72 | 7.4 | 14.8 | 57.51 | 0.0099988 | 54.78349 | 1394.9452 | 7.339515 | 1615 | 1735 | 1972 | 2131 | 2226 | 2380 | 2572 | 2627 | 3906 | 3878 | 0.6640812 | 0.6133443 |
76 | 463412.6 | 5805115 | 1.41 | 6.8 | 10.6 | 58.19 | 0.0950003 | 81.97400 | 1359.5303 | 7.050184 | 1672 | 1820 | 2098 | 2344 | 2477 | 2625 | 2778 | 2896 | 4191 | 4133 | 0.6506461 | 0.6056497 |
77 | 463387.6 | 5805158 | 1.06 | 6.0 | 8.0 | 59.03 | 0.0412493 | 103.70253 | 1357.2603 | 6.886902 | 1719 | 1924 | 2254 | 2405 | 2511 | 2702 | 2974 | 2916 | 4194 | 4129 | 0.5886691 | 0.5593945 |
78 | 463412.6 | 5805201 | 0.89 | 5.8 | 7.8 | 59.00 | 0.1450000 | 110.20900 | 1417.1538 | 6.650871 | 1834 | 2112 | 2510 | 2740 | 2861 | 2991 | 3254 | 3236 | 4545 | 4519 | 0.5240055 | 0.5095109 |
79 | 463387.6 | 5805244 | 0.91 | 6.0 | 5.8 | 59.94 | 0.0662503 | 277.15511 | 1265.7415 | 6.730685 | 1954 | 2252 | 2710 | 2966 | 3076 | 3259 | 3452 | 3489 | 4685 | 4781 | 0.4583990 | 0.4589101 |
80 | 463412.6 | 5805288 | 0.73 | 6.3 | 3.5 | 60.30 | 0.0599999 | 190.40388 | 1358.1637 | 6.787226 | 1966 | 2290 | 2750 | 2990 | 3127 | 3282 | 3484 | 3537 | 4689 | 4790 | 0.5134113 | 0.4994889 |
81 | 463387.6 | 5805331 | 0.79 | 6.6 | 4.5 | 60.05 | 0.1250010 | 414.78232 | 1375.3063 | 6.825928 | 2023 | 2356 | 2818 | 3044 | 3162 | 3353 | 3640 | 3551 | 4726 | 4817 | 0.5267903 | 0.5146811 |
82 | 463412.6 | 5805374 | 0.8 | 5.9 | 11.9 | 59.64 | 0.1062498 | 267.93243 | 1426.9886 | 6.752378 | 2009 | 2330 | 2792 | 3026 | 3171 | 3325 | 3578 | 3542 | 4633 | 4721 | 0.5091774 | 0.4957049 |
83 | 463444.1 | 5804564 | 0.63 | 6.6 | 3.9 | 69.94 | 0.2375002 | 693.72278 | 790.6023 | 6.880600 | 1856 | 2228 | 2702 | 2789 | 2939 | 3100 | 3396 | 3276 | 4420 | 4332 | 0.3064516 | 0.3353116 |
84 | 463469.1 | 5804608 | 0.72 | 6.7 | 3.1 | 68.14 | 0.2687492 | 446.62110 | 1036.8473 | 6.864885 | 1955 | 2270 | 2710 | 2795 | 2935 | 3091 | 3424 | 3261 | 4467 | 4447 | 0.4873634 | 0.4767718 |
85 | 463444.1 | 5804651 | 0.8 | 5.8 | 4.6 | 67.93 | 0.0824995 | 461.87865 | 1088.2814 | 6.819734 | 1987 | 2290 | 2750 | 3028 | 3169 | 3331 | 3544 | 3555 | 4757 | 4874 | 0.5227989 | 0.4972286 |
86 | 463469.1 | 5804694 | 0.89 | 5.8 | 6.1 | 67.17 | 0.0912495 | 83.89641 | 1222.5409 | 6.750419 | 1920 | 2214 | 2630 | 2858 | 2983 | 3149 | 3374 | 3376 | 4457 | 4470 | 0.5952897 | 0.5628415 |
87 | 463444.1 | 5804738 | 1.01 | 6.2 | 7.1 | 65.45 | 0.1587515 | 88.16160 | 1217.7181 | 6.750646 | 1929 | 2196 | 2628 | 2821 | 2937 | 3078 | 3344 | 3316 | 4460 | 4448 | 0.6086287 | 0.5685096 |
88 | 463469.1 | 5804781 | 0.94 | 6.0 | 5.5 | 63.12 | 0.1624999 | 158.48519 | 1173.9261 | 6.773363 | 1893 | 2124 | 2590 | 2786 | 2905 | 3077 | 3310 | 3304 | 4532 | 4544 | 0.5837260 | 0.5489322 |
89 | 463444.1 | 5804824 | 0.99 | 6.3 | 5.0 | 62.08 | 0.1100011 | 144.35661 | 1219.6687 | 6.795249 | 1924 | 2190 | 2608 | 2822 | 2947 | 3100 | 3342 | 3347 | 4618 | 4685 | 0.5960347 | 0.5616854 |
90 | 463469.1 | 5804868 | 1.27 | 6.8 | 5.7 | 60.52 | 0.1174994 | 128.52191 | 1232.0866 | 7.048964 | 1834 | 2022 | 2394 | 2568 | 2680 | 2808 | 3016 | 3014 | 3983 | 4036 | 0.6277761 | 0.5818705 |
91 | 463444.1 | 5804911 | 1.48 | 6.8 | 6.1 | 59.04 | 0.1537499 | 129.81597 | 1289.6311 | 7.117906 | 1792 | 1988 | 2300 | 2406 | 2520 | 2668 | 2824 | 2872 | 3884 | 3927 | 0.5858179 | 0.5505830 |
92 | 463469.1 | 5804932 | 1.6 | 7.3 | 6.2 | 58.03 | 0.1187506 | 65.02794 | 1187.1534 | 7.287864 | 1688 | 1868 | 2156 | 2319 | 2431 | 2544 | 2806 | 2798 | 3961 | 4025 | 0.6657534 | 0.6148738 |
93 | 463417.3 | 5804987 | 2.42 | 7.3 | 12.9 | 57.72 | 0.0775003 | 45.48428 | 1393.0189 | 7.259055 | 1574 | 1716 | 1956 | 2100 | 2207 | 2366 | 2550 | 2598 | 3754 | 3732 | 0.6682779 | 0.6197372 |
94 | 463462.6 | 5805044 | 2.82 | 7.4 | 10.1 | 57.23 | 0.0350008 | 39.59307 | 1326.4870 | 7.370984 | 1752 | 1878 | 2232 | 2202 | 2251 | 2414 | 2820 | 2615 | 3877 | 3931 | 0.6623121 | 0.6162251 |
95 | 463437.6 | 5805071 | 3.13 | 7.5 | 16.2 | 57.32 | 0.0387502 | 65.77803 | 1284.1161 | 7.291442 | 1602 | 1744 | 1974 | 2128 | 2218 | 2354 | 2512 | 2579 | 3930 | 3939 | 0.6695652 | 0.6197108 |
96 | 463462.6 | 5805115 | 1.63 | 7.2 | 8.8 | 57.86 | 0.1349998 | 76.05850 | 1438.9688 | 7.016274 | 1644 | 1766 | 2054 | 2263 | 2370 | 2542 | 2652 | 2781 | 4077 | 4050 | 0.6462684 | 0.6073007 |
97 | 463437.6 | 5805158 | 1.33 | 5.8 | 6.6 | 58.82 | 0.0687499 | 129.72247 | 1366.4189 | 6.745273 | 1726 | 1916 | 2260 | 2401 | 2511 | 2665 | 2986 | 2922 | 4243 | 4158 | 0.6071772 | 0.5662763 |
98 | 463462.6 | 5805201 | 1.23 | 5.8 | 7.0 | 59.04 | 0.1162496 | 142.07825 | 1461.1715 | 6.580373 | 1796 | 2030 | 2408 | 2595 | 2733 | 2900 | 3108 | 3127 | 4378 | 4332 | 0.5482158 | 0.5256788 |
99 | 463437.6 | 5805244 | 1.17 | 6.4 | 7.5 | 60.15 | 0.0337505 | 87.56203 | 1563.9678 | 6.626196 | 1904 | 2192 | 2620 | 2986 | 3085 | 3263 | 3366 | 3462 | 4734 | 4769 | 0.5155875 | 0.5055300 |
100 | 463462.6 | 5805288 | 0.95 | 6.1 | 6.2 | 60.02 | 0.0462499 | 164.06361 | 1444.5413 | 6.692768 | 1928 | 2190 | 2654 | 2980 | 3094 | 3285 | 3350 | 3530 | 4709 | 4720 | 0.5474524 | 0.5229093 |
101 | 463437.6 | 5805331 | 0.72 | 6.0 | 4.5 | 60.28 | 0.0312490 | 131.56674 | 1477.0884 | 6.759448 | 1922 | 2236 | 2676 | 3005 | 3140 | 3274 | 3390 | 3484 | 4600 | 4649 | 0.5203745 | 0.5008559 |
102 | 463462.6 | 5805374 | 0.89 | 6.0 | 4.5 | 60.10 | 0.0712495 | 328.48193 | 1415.5441 | 6.687316 | 1996 | 2320 | 2804 | 2981 | 3121 | 3313 | 3590 | 3559 | 4668 | 4753 | 0.5441892 | 0.5310941 |
103 | 463494.1 | 5804651 | 0.87 | 6.0 | 5.1 | 67.55 | 0.0337477 | 125.10376 | 1138.8122 | 6.788760 | 1908 | 2162 | 2538 | 2824 | 2908 | 3082 | 3258 | 3263 | 4391 | 4428 | 0.5855624 | 0.5418364 |
104 | 463519.1 | 5804694 | 0.9 | 6.1 | 4.9 | 66.49 | 0.1162491 | 263.16166 | 1130.7420 | 6.720321 | 1930 | 2180 | 2592 | 2800 | 2909 | 3065 | 3276 | 3261 | 4310 | 4274 | 0.5688838 | 0.5308563 |
105 | 463494.1 | 5804738 | 0.91 | 6.5 | 5.2 | 65.04 | 0.2012501 | 159.35400 | 1179.1147 | 6.731754 | 1958 | 2224 | 2622 | 2829 | 2958 | 3115 | 3334 | 3357 | 4518 | 4493 | 0.5913910 | 0.5513730 |
106 | 463519.1 | 5804781 | 0.74 | 6.3 | 5.0 | 62.59 | 0.1512494 | 388.40984 | 1129.6663 | 6.820396 | 1894 | 2146 | 2542 | 2854 | 3007 | 3135 | 3276 | 3333 | 4617 | 4715 | 0.6097561 | 0.5671233 |
107 | 463494.1 | 5804824 | 0.95 | 6.9 | 7.7 | 61.52 | 0.1362495 | 249.10863 | 1185.4905 | 6.937549 | 1884 | 2104 | 2490 | 2729 | 2832 | 2960 | 3230 | 3245 | 4431 | 4531 | 0.5717916 | 0.5435969 |
108 | 463519.1 | 5804868 | 1.48 | 7.2 | 3.3 | 59.90 | 0.1762495 | 93.90455 | 1222.2550 | 7.175188 | 1791 | 1982 | 2334 | 2366 | 2481 | 2611 | 2904 | 2854 | 3893 | 3902 | 0.6359577 | 0.5884393 |
109 | 463494.1 | 5804911 | 1.4 | 7.0 | 5.4 | 58.50 | 0.1287494 | 104.08597 | 1224.0041 | 7.300752 | 1725 | 1897 | 2198 | 2343 | 2462 | 2615 | 2838 | 2872 | 4016 | 4029 | 0.6406661 | 0.5909348 |
110 | 463512.6 | 5804941 | 2.34 | 7.4 | 7.6 | 57.65 | 0.0449996 | 36.95679 | 1124.7133 | 7.394449 | 1643 | 1762 | 1994 | 2299 | 2303 | 2547 | 2596 | 2748 | 3967 | 4032 | 0.6650691 | 0.6016860 |
111 | 463489.0 | 5804998 | 1.79 | 7.3 | 8.6 | 57.44 | 0.0787501 | 44.72649 | 1237.2641 | 7.441678 | 1676 | 1857 | 2062 | 2197 | 2960 | 2945 | 2768 | 3244 | 3723 | 3454 | 0.6161240 | 0.5665765 |
112 | 463512.6 | 5805028 | 2.27 | 7.4 | 15.9 | 57.24 | 0.0499988 | 71.00161 | 1232.1745 | 7.448153 | 1674 | 1845 | 2102 | 2228 | 2467 | 2524 | 2676 | 2790 | 3926 | 3856 | 0.6574477 | 0.6023344 |
113 | 463487.6 | 5805071 | 2.81 | 7.4 | 16.1 | 57.24 | 0.0249996 | 59.92226 | 1249.1956 | 7.288977 | 1678 | 1827 | 2090 | 2150 | 2240 | 2338 | 2646 | 2566 | 3891 | 3938 | 0.6739247 | 0.6230940 |
114 | 463512.6 | 5805115 | 1.56 | 6.9 | 6.2 | 57.82 | 0.0612507 | 96.26552 | 1284.8643 | 7.056897 | 1637 | 1796 | 2036 | 2362 | 2458 | 2594 | 2660 | 2829 | 4156 | 4171 | 0.6309851 | 0.5885935 |
115 | 463487.6 | 5805158 | 1.11 | 6.0 | 6.8 | 58.56 | 0.0512495 | 122.26806 | 1364.1095 | 6.722092 | 1788 | 2010 | 2388 | 2451 | 2565 | 2723 | 3058 | 2955 | 4225 | 4193 | 0.5750328 | 0.5491460 |
116 | 463512.6 | 5805201 | 0.87 | 5.8 | 6.9 | 59.01 | 0.0912514 | 179.68730 | 1377.5330 | 6.549329 | 1864 | 2152 | 2590 | 2734 | 2841 | 2993 | 3276 | 3224 | 4479 | 4458 | 0.5441370 | 0.5173976 |
117 | 463487.6 | 5805244 | 0.92 | 5.9 | 7.0 | 59.80 | 0.0462494 | 176.82521 | 1438.6507 | 6.603609 | 1910 | 2176 | 2612 | 2834 | 2984 | 3136 | 3356 | 3386 | 4608 | 4648 | 0.5553743 | 0.5311496 |
118 | 463512.6 | 5805288 | 0.82 | 6.1 | 6.6 | 60.47 | 0.0487509 | 114.49289 | 1429.7880 | 6.631100 | 1948 | 2218 | 2672 | 2936 | 3034 | 3238 | 3388 | 3440 | 4610 | 4656 | 0.5761737 | 0.5465371 |
119 | 463487.6 | 5805331 | 0.86 | 6.0 | 6.0 | 60.44 | 0.0762515 | 212.90986 | 1384.9897 | 6.675665 | 1978 | 2270 | 2712 | 3003 | 3127 | 3308 | 3490 | 3494 | 4669 | 4697 | 0.5498877 | 0.5244557 |
120 | 463512.6 | 5805374 | 1 | 6.3 | 6.3 | 60.75 | 0.0925002 | 264.73054 | 1290.1573 | 6.655729 | 1928 | 2216 | 2636 | 2910 | 3055 | 3269 | 3354 | 3428 | 4612 | 4686 | 0.5771737 | 0.5471698 |
121 | 463544.1 | 5804824 | 1.23 | 7.1 | 6.4 | 61.19 | 0.0937505 | 161.83044 | 1144.5785 | 6.984307 | 1872 | 2038 | 2350 | 2461 | 2558 | 2811 | 3042 | 2916 | 3794 | 3767 | 0.6463626 | 0.5961377 |
122 | 463569.1 | 5804868 | 1.41 | 7.3 | 5.2 | 59.77 | 0.1450000 | 135.44327 | 1145.5539 | 7.131771 | 1718 | 1892 | 2172 | 2381 | 2507 | 2640 | 2830 | 2864 | 4033 | 4040 | 0.6824832 | 0.6092074 |
123 | 463544.1 | 5804911 | 1.59 | 7.2 | 12.0 | 58.33 | 0.1050005 | 57.93237 | 1163.7498 | 7.332167 | 1657 | 1796 | 2028 | 2137 | 2269 | 2411 | 2710 | 2649 | 3836 | 3754 | 0.6700374 | 0.6191244 |
124 | 463562.6 | 5804941 | 2.49 | 7.4 | 7.0 | 57.56 | 0.0412502 | 48.52231 | 1203.2409 | 7.379164 | 1596 | 1744 | 1948 | 2080 | 2207 | 2333 | 2508 | 2547 | 3791 | 3739 | 0.6834040 | 0.6208668 |
125 | 463537.6 | 5804985 | 3.06 | 7.5 | 10.2 | 57.43 | 0.0200009 | 55.93960 | 1132.1643 | 7.456781 | 1602 | 1730 | 1960 | 2184 | 2254 | 2412 | 2522 | 2626 | 3926 | 3963 | 0.6614045 | 0.5991616 |
126 | 463562.6 | 5805028 | 2.53 | 7.5 | 12.6 | 57.16 | 0.0437508 | 62.03869 | 1234.1593 | 7.403219 | 1602 | 1718 | 1936 | 2096 | 2162 | 2286 | 2532 | 2527 | 3803 | 3801 | 0.6568448 | 0.5934915 |
127 | 463537.6 | 5805071 | 1.72 | 7.2 | 7.4 | 57.70 | 0.1524997 | 72.74217 | 1262.3662 | 7.313991 | 1620 | 1767 | 2046 | 2090 | 2237 | 2360 | 2632 | 2593 | 3997 | 4065 | 0.6041032 | 0.5596073 |
128 | 463562.6 | 5805115 | 1.21 | 6.3 | 5.4 | 57.85 | 0.1100011 | 127.33624 | 1267.9595 | 7.067966 | 1756 | 1948 | 2248 | 2605 | 2729 | 2864 | 2930 | 3117 | 4424 | 4448 | 0.6053375 | 0.5633695 |
129 | 463537.6 | 5805158 | 1 | 6.0 | 6.6 | 58.34 | 0.0624995 | 232.64720 | 1301.7935 | 6.787254 | 1830 | 2064 | 2440 | 2545 | 2637 | 2824 | 3166 | 3076 | 4309 | 4329 | 0.5712435 | 0.5442393 |
130 | 463562.6 | 5805201 | 0.87 | 6.1 | 5.4 | 59.29 | 0.0924997 | 323.03271 | 1287.0772 | 6.638816 | 1874 | 2170 | 2642 | 2869 | 2986 | 3128 | 3384 | 3372 | 4676 | 4738 | 0.5654849 | 0.5405448 |
131 | 463537.6 | 5805244 | 0.95 | 5.8 | 4.6 | 59.87 | 0.0650005 | 187.02540 | 1300.4915 | 6.567674 | 1920 | 2236 | 2700 | 2907 | 3025 | 3182 | 3386 | 3418 | 4587 | 4653 | 0.5629820 | 0.5380237 |
132 | 463562.6 | 5805288 | 0.77 | 5.9 | 2.3 | 61.60 | 0.1137495 | 323.09171 | 1119.8698 | 6.610454 | 2013 | 2288 | 2782 | 3012 | 3150 | 3298 | 3552 | 3535 | 4778 | 4861 | 0.4746483 | 0.4636364 |
133 | 463537.6 | 5805331 | 0.92 | 6.1 | 8.3 | 61.34 | 0.2087493 | 159.67189 | 1298.6889 | 6.627419 | 1922 | 2184 | 2638 | 2909 | 2996 | 3197 | 3354 | 3381 | 4547 | 4578 | 0.6063862 | 0.5744809 |
134 | 463562.6 | 5805374 | 0.8 | 6.2 | 6.4 | 61.89 | 0.1949997 | 388.71387 | 1143.0183 | 6.661456 | 1954 | 2250 | 2694 | 2893 | 3049 | 3235 | 3426 | 3435 | 4598 | 4727 | 0.4452994 | 0.4400000 |
135 | 463587.6 | 5804898 | 1.03 | 6.3 | 6.3 | 58.86 | 0.1275001 | 130.20053 | 1182.4615 | 7.169967 | 1705 | 1874 | 2152 | 2368 | 2496 | 2676 | 2820 | 2894 | 4027 | 3998 | 0.6456799 | 0.5932499 |
136 | 463601.8 | 5804947 | 1.49 | 6.8 | 6.5 | 57.81 | 0.0124998 | 118.99471 | 1186.0694 | 7.206483 | 1610 | 1754 | 1946 | 2210 | 2324 | 2488 | 2620 | 2710 | 4011 | 4017 | 0.6637347 | 0.6067400 |
137 | 463587.6 | 5804985 | 2.21 | 7.2 | 7.1 | 57.64 | 0.0275002 | 69.43207 | 1208.4539 | 7.318411 | 1567 | 1692 | 1890 | 2045 | 2201 | 2317 | 2476 | 2503 | 3753 | 3782 | 0.6304878 | 0.5759540 |
138 | 463612.6 | 5805028 | 1.78 | 6.8 | 7.2 | 57.52 | 0.0999994 | 133.76059 | 1239.0210 | 7.169884 | 1584 | 1694 | 1918 | 2059 | 2142 | 2270 | 2450 | 2482 | 3799 | 3853 | 0.6238058 | 0.5697199 |
139 | 463587.6 | 5805071 | 2.74 | 7.2 | 14.0 | 57.35 | 0.0437493 | 62.89901 | 1360.7079 | 7.182036 | 1651 | 1766 | 2042 | 2130 | 2267 | 2391 | 2636 | 2626 | 4027 | 4035 | 0.5850461 | 0.5494384 |
140 | 463612.6 | 5805115 | 1.2 | 6.6 | 7.5 | 57.97 | 0.0862498 | 158.15175 | 1270.1886 | 6.932949 | 1727 | 1874 | 2196 | 2523 | 2657 | 2777 | 2858 | 3046 | 4313 | 4350 | 0.5797460 | 0.5408623 |
141 | 463587.6 | 5805158 | 1.06 | 6.1 | 5.4 | 58.66 | 0.1200004 | 199.11154 | 1262.0122 | 6.801995 | 1872 | 2118 | 2550 | 2679 | 2808 | 2974 | 3286 | 3192 | 4471 | 4536 | 0.5549806 | 0.5316980 |
142 | 463612.6 | 5805201 | 0.8 | 5.8 | 4.9 | 59.93 | 0.1024990 | 315.44639 | 1252.1190 | 6.719218 | 1910 | 2186 | 2660 | 2887 | 3003 | 3158 | 3392 | 3396 | 4700 | 4784 | 0.5418904 | 0.5193972 |
143 | 463587.6 | 5805244 | 0.74 | 6.1 | 3.5 | 60.49 | 0.0912509 | 400.65960 | 1145.8750 | 6.642469 | 1950 | 2248 | 2702 | 2998 | 3115 | 3270 | 3454 | 3514 | 4868 | 5007 | 0.5440195 | 0.5207565 |
144 | 463612.6 | 5805288 | 0.52 | 6.3 | 3.2 | 62.12 | 0.0587506 | 494.78533 | 1035.8148 | 6.716818 | 1990 | 2296 | 2762 | 2955 | 3065 | 3245 | 3530 | 3464 | 4794 | 4970 | 0.4337662 | 0.4370322 |
145 | 463587.6 | 5805331 | 0.57 | 6.6 | 1.8 | 63.16 | 0.0512495 | 255.23615 | 1114.6776 | 6.678369 | 1924 | 2262 | 2716 | 2955 | 3085 | 3227 | 3468 | 3446 | 4709 | 4857 | 0.4466897 | 0.4358389 |
146 | 463612.6 | 5805374 | 0.67 | 7.0 | 5.6 | 62.97 | 0.1850004 | 240.56692 | 1112.5206 | 6.754630 | 1932 | 2210 | 2628 | 2846 | 2981 | 3150 | 3382 | 3366 | 4571 | 4741 | 0.4262566 | 0.4260208 |
147 | 463637.6 | 5805071 | 1.27 | 6.3 | 6.5 | 57.47 | 0.0450001 | 197.79463 | 1207.0716 | 6.952288 | 1720 | 1878 | 2144 | 2177 | 2298 | 2446 | 2760 | 2682 | 4000 | 4027 | 0.5599865 | 0.5186708 |
148 | 463662.6 | 5805115 | 0.78 | 5.8 | 5.9 | 57.98 | 0.0949993 | 203.84794 | 1214.5487 | 6.766295 | 1816 | 2052 | 2448 | 2605 | 2689 | 2836 | 3074 | 3028 | 4203 | 4215 | 0.5374893 | 0.5061067 |
149 | 463637.6 | 5805158 | 0.91 | 6.6 | 6.6 | 59.32 | 0.1112509 | 117.61061 | 1306.8628 | 6.755830 | 1803 | 2042 | 2444 | 2660 | 2774 | 2923 | 3088 | 3187 | 4431 | 4453 | 0.5444780 | 0.5134868 |
150 | 463662.6 | 5805201 | 0.71 | 6.1 | 4.3 | 60.49 | 0.1062503 | 216.18767 | 1177.2206 | 6.756177 | 1943 | 2218 | 2628 | 2812 | 2928 | 3069 | 3312 | 3279 | 4547 | 4641 | 0.4857143 | 0.4660178 |
151 | 463637.6 | 5805244 | 0.85 | 6.5 | 3.0 | 61.23 | 0.0812502 | 421.01518 | 1180.4252 | 6.768052 | 1926 | 2220 | 2698 | 3053 | 3180 | 3325 | 3452 | 3609 | 4890 | 5055 | 0.5146526 | 0.4925373 |
152 | 463662.6 | 5805288 | 0.81 | 6.4 | 4.5 | 61.84 | 0.0949998 | 228.28751 | 1141.6795 | 6.851031 | 1946 | 2242 | 2672 | 2865 | 2975 | 3156 | 3398 | 3367 | 4673 | 4788 | 0.4838063 | 0.4676354 |
153 | 463637.6 | 5805331 | 0.73 | 6.3 | 3.0 | 61.19 | 0.1300006 | 422.32591 | 1038.5827 | 6.806584 | 1900 | 2186 | 2632 | 2914 | 3061 | 3183 | 3336 | 3442 | 4708 | 4868 | 0.4098637 | 0.4115268 |
154 | 463662.6 | 5805374 | 0.6 | 6.1 | 2.7 | 61.84 | 0.1037507 | 263.48489 | 1043.4323 | 6.850850 | 1956 | 2254 | 2704 | 2922 | 3039 | 3221 | 3502 | 3451 | 4706 | 4857 | 0.4569362 | 0.4441186 |
155 | 463661.3 | 5805067 | 0.85 | 6.1 | 5.3 | 57.71 | 0.0337501 | 199.82453 | 1148.7023 | 6.850561 | 1836 | 2001 | 2296 | 2436 | 2524 | 2660 | 2956 | 2926 | 4142 | 4197 | 0.4831304 | 0.4645372 |
156 | 463712.6 | 5805115 | 0.86 | 5.8 | 5.8 | 57.56 | 0.0937500 | 233.46077 | 1131.9118 | 6.643258 | 1846 | 2064 | 2454 | 2652 | 2754 | 2910 | 3070 | 3146 | 4315 | 4331 | 0.4985189 | 0.4802065 |
157 | 463687.6 | 5805158 | 0.84 | 6.3 | 5.0 | 58.89 | 0.1837497 | 234.13663 | 1159.0834 | 6.683413 | 1850 | 2118 | 2500 | 2645 | 2768 | 2916 | 3108 | 3098 | 4274 | 4279 | 0.4955203 | 0.4782016 |
158 | 463712.6 | 5805201 | 0.82 | 6.5 | 3.9 | 59.94 | 0.1662502 | 434.43134 | 1084.1440 | 6.727150 | 1916 | 2216 | 2620 | 2797 | 2933 | 3053 | 3268 | 3257 | 4457 | 4531 | 0.4848588 | 0.4673840 |
159 | 463687.6 | 5805244 | 0.78 | 6.1 | 2.5 | 61.98 | 0.0887504 | 234.28404 | 1101.4893 | 6.818412 | 1927 | 2222 | 2684 | 2887 | 2963 | 3174 | 3348 | 3303 | 4531 | 4622 | 0.4540278 | 0.4491738 |
160 | 463712.6 | 5805288 | 0.59 | 6.5 | 3.3 | 61.34 | 0.0874996 | 358.83170 | 1093.8935 | 6.866570 | 1952 | 2216 | 2650 | 2739 | 2804 | 3014 | 3324 | 3219 | 4382 | 4507 | 0.4354644 | 0.4181137 |
161 | 463687.6 | 5805331 | 0.84 | 6.6 | 4.4 | 60.36 | 0.1012502 | 394.30945 | 1064.9895 | 6.883670 | 1875 | 2172 | 2594 | 2806 | 2939 | 3086 | 3316 | 3305 | 4601 | 4760 | 0.4674715 | 0.4456558 |
162 | 463712.6 | 5805374 | 0.57 | 5.9 | 2.5 | 60.61 | 0.0937500 | 464.05772 | 1034.1321 | 6.868661 | 1938 | 2266 | 2696 | 2926 | 3046 | 3252 | 3470 | 3419 | 4685 | 4853 | 0.3947020 | 0.4021305 |
163 | 463214.6 | 5805009 | 1.02 | 6.5 | 7.5 | 60.38 | 0.0862503 | 246.55051 | 1344.9051 | 6.683669 | 1805 | 2019 | 2392 | 2581 | 2760 | 3115 | 3194 | 3379 | 4154 | 4226 | 0.5150461 | 0.5012065 |
164 | 463762.6 | 5805115 | 0.91 | 6.2 | 4.6 | 57.51 | 0.0900011 | 271.10841 | 1099.4354 | 6.623403 | 1839 | 2076 | 2462 | 2687 | 2801 | 2937 | 3060 | 3146 | 4329 | 4393 | 0.5072667 | 0.4815835 |
165 | 463737.6 | 5805158 | 0.83 | 6.2 | 4.8 | 59.11 | 0.1037498 | 284.24933 | 1128.1129 | 6.653250 | 1874 | 2094 | 2500 | 2684 | 2764 | 2913 | 3120 | 3092 | 4227 | 4255 | 0.5304107 | 0.5081967 |
166 | 463762.6 | 5805201 | 0.79 | 6.0 | 2.9 | 59.32 | 0.0474992 | 489.42159 | 1081.3981 | 6.734506 | 1928 | 2150 | 2554 | 2781 | 2860 | 3019 | 3232 | 3244 | 4430 | 4508 | 0.5031469 | 0.4780815 |
167 | 463737.6 | 5805244 | 0.8 | 6.4 | 7.7 | 61.55 | 0.2562499 | 156.14031 | 1101.8771 | 6.797244 | 1932 | 2262 | 2688 | 2831 | 2949 | 3054 | 3316 | 3300 | 4385 | 4431 | 0.4762221 | 0.4667107 |
168 | 463762.6 | 5805288 | 0.7 | 6.1 | 3.8 | 61.23 | 0.1537499 | 248.96839 | 1161.4840 | 6.763531 | 1914 | 2166 | 2584 | 2822 | 2917 | 3056 | 3226 | 3282 | 4418 | 4500 | 0.4643466 | 0.4514711 |
169 | 463737.6 | 5805331 | 0.57 | 6.2 | 2.9 | 60.03 | 0.0774999 | 513.36578 | 1068.1898 | 6.825418 | 1888 | 2182 | 2636 | 2773 | 2879 | 3028 | 3300 | 3252 | 4454 | 4597 | 0.4555404 | 0.4520641 |
170 | 463762.6 | 5805374 | 0.54 | 6.4 | 1.8 | 59.69 | 0.0387497 | 335.20815 | 1077.0669 | 6.730819 | 1949 | 2266 | 2672 | 2871 | 2971 | 3158 | 3420 | 3358 | 4487 | 4545 | 0.4678432 | 0.4540259 |
171 | 463787.6 | 5805158 | 0.68 | 6.1 | 2.7 | 59.36 | 0.0812492 | 336.53319 | 1051.3261 | 6.687310 | 1886 | 2144 | 2526 | 2754 | 2839 | 3013 | 3178 | 3201 | 4421 | 4480 | 0.4453379 | 0.4450907 |
172 | 463812.6 | 5805201 | 0.98 | 6.0 | 6.1 | 58.78 | 0.0875006 | 508.59832 | 1044.9392 | 6.741808 | 1893 | 2144 | 2534 | 2759 | 2828 | 3004 | 3158 | 3190 | 4367 | 4461 | 0.4272517 | 0.4297918 |
173 | 463787.6 | 5805244 | 0.76 | 6.5 | 4.5 | 60.20 | 0.0937500 | 443.54071 | 1051.5430 | 6.727672 | 1902 | 2224 | 2660 | 2734 | 2818 | 2954 | 3280 | 3141 | 4276 | 4366 | 0.4222820 | 0.4306964 |
174 | 463812.6 | 5805288 | 0.75 | 6.0 | 3.9 | 59.38 | 0.1324997 | 480.40858 | 1083.8094 | 6.651502 | 1892 | 2172 | 2560 | 2856 | 2950 | 3069 | 3244 | 3329 | 4460 | 4528 | 0.4269231 | 0.4192314 |
175 | 463787.6 | 5805331 | 0.75 | 5.2 | 2.8 | 59.25 | 0.0974994 | 469.55138 | 1104.1070 | 6.667091 | 1938 | 2186 | 2608 | 2840 | 2949 | 3119 | 3316 | 3337 | 4466 | 4539 | 0.5093039 | 0.4923339 |
176 | 463812.6 | 5805374 | 0.69 | 5.8 | 4.3 | 59.31 | 0.0162487 | 308.27369 | 1176.2606 | 6.552788 | 1980 | 2284 | 2716 | 2878 | 3038 | 3203 | 3448 | 3412 | 4477 | 4495 | 0.4900585 | 0.4772238 |
177 | 463837.6 | 5805158 | 0.86 | 6.2 | 3.5 | 59.03 | 0.0350003 | 261.23927 | 1040.4570 | 6.757152 | 1905 | 2194 | 2572 | 2782 | 2884 | 3024 | 3218 | 3233 | 4444 | 4550 | 0.4503817 | 0.4398898 |
178 | 463862.6 | 5805201 | 0.96 | 6.4 | 4.2 | 58.71 | 0.0275002 | 594.50480 | 1059.8442 | 6.799743 | 1907 | 2164 | 2540 | 2761 | 2855 | 3024 | 3126 | 3215 | 4442 | 4556 | 0.4773419 | 0.4598230 |
179 | 463837.6 | 5805244 | 0.57 | 6.6 | 3.4 | 59.99 | 0.0925007 | 304.30478 | 991.2611 | 6.695878 | 1912 | 2186 | 2632 | 2779 | 2866 | 3023 | 3266 | 3226 | 4414 | 4488 | 0.4170404 | 0.4141136 |
180 | 463862.6 | 5805288 | 0.87 | 6.0 | 4.6 | 58.43 | 0.0500002 | 582.55978 | 1092.2574 | 6.618117 | 1886 | 2166 | 2566 | 2810 | 2925 | 3051 | 3210 | 3270 | 4395 | 4464 | 0.4740363 | 0.4624520 |
181 | 463837.6 | 5805331 | 0.88 | 5.1 | 3.4 | 58.72 | 0.0487509 | 560.52120 | 1094.3056 | 6.525579 | 1926 | 2204 | 2606 | 2841 | 2950 | 3112 | 3370 | 3331 | 4455 | 4523 | 0.5202312 | 0.4953177 |
182 | 463862.6 | 5805374 | 0.73 | 5.3 | 3.0 | 59.44 | 0.0550008 | 400.98755 | 1116.1966 | 6.458205 | 1983 | 2274 | 2688 | 2904 | 3058 | 3205 | 3448 | 3417 | 4454 | 4519 | 0.4677447 | 0.4535446 |
183 | 464238.1 | 5805176 | 0.77 | 6.3 | 4.4 | 60.97 | 0.1550012 | 204.29248 | 1042.4866 | 6.814159 | 1963 | 2250 | 2688 | 2779 | 2901 | 3056 | 3410 | 3237 | 4467 | 4567 | 0.3773987 | 0.3959441 |
184 | 463928.9 | 5805104 | 0.98 | 5.8 | 3.7 | 59.63 | 0.0524998 | 366.22933 | 978.3690 | 6.716652 | 1848 | 2072 | 2452 | 2700 | 2802 | 2965 | 3074 | 3155 | 4418 | 4494 | 0.4194360 | 0.4098127 |
185 | 463887.6 | 5805158 | 0.85 | 6.4 | 4.5 | 59.89 | 0.1762505 | 174.90659 | 1071.5878 | 6.791008 | 1896 | 2154 | 2560 | 2767 | 2912 | 3072 | 3134 | 3293 | 4366 | 4433 | 0.4051578 | 0.4154845 |
186 | 463912.6 | 5805201 | 1 | 6.2 | 4.0 | 59.73 | 0.1174998 | 338.95689 | 983.0554 | 6.814855 | 1897 | 2206 | 2592 | 2793 | 2908 | 3047 | 3288 | 3298 | 4437 | 4559 | 0.4053590 | 0.4082616 |
187 | 463887.6 | 5805244 | 0.73 | 6.4 | 3.7 | 59.63 | 0.1075006 | 394.53528 | 1010.8559 | 6.766841 | 1952 | 2210 | 2632 | 2786 | 2884 | 3040 | 3226 | 3246 | 4358 | 4461 | 0.4038594 | 0.4082268 |
188 | 463912.6 | 5805288 | 0.83 | 6.4 | 4.2 | 58.64 | 0.1037502 | 373.41155 | 1033.7985 | 6.662338 | 1878 | 2164 | 2550 | 2852 | 2983 | 3120 | 3188 | 3294 | 4408 | 4542 | 0.4498607 | 0.4358621 |
189 | 463887.6 | 5805331 | 0.74 | 5.3 | 2.1 | 58.83 | 0.1925011 | 515.52662 | 1058.4789 | 6.517938 | 1956 | 2224 | 2708 | 2829 | 2904 | 3058 | 3448 | 3318 | 4420 | 4503 | 0.4638254 | 0.4643287 |
190 | 463912.6 | 5805374 | 0.83 | 6.1 | 3.9 | 60.22 | 0.0887499 | 142.73193 | 1155.0911 | 6.483220 | 1917 | 2224 | 2628 | 2851 | 2982 | 3122 | 3340 | 3314 | 4303 | 4393 | 0.4372598 | 0.4291411 |
191 | 463975.3 | 5805031 | 0.77 | 7.0 | 4.9 | 58.51 | 0.2012501 | 252.30026 | 1026.4099 | 6.688603 | 1854 | 2084 | 2458 | 2651 | 2789 | 2927 | 3062 | 3100 | 4292 | 4374 | 0.4170821 | 0.4166113 |
192 | 463937.6 | 5805064 | 0.95 | 5.8 | 4.1 | 59.27 | 0.0937505 | 245.97847 | 1021.4856 | 6.698418 | 1822 | 2044 | 2456 | 2614 | 2740 | 2894 | 3100 | 3086 | 4278 | 4312 | 0.4251285 | 0.4251285 |
193 | 463962.6 | 5805115 | 0.83 | 6.2 | 3.1 | 59.33 | 0.2399988 | 345.63455 | 991.9399 | 6.695840 | 1855 | 2080 | 2488 | 2702 | 2843 | 2962 | 3088 | 3177 | 4393 | 4481 | 0.4190828 | 0.4168421 |
194 | 463937.6 | 5805158 | 0.86 | 5.9 | 4.4 | 60.73 | 0.1349993 | 400.43720 | 978.7504 | 6.769126 | 1925 | 2156 | 2562 | 2787 | 2846 | 3019 | 3214 | 3207 | 4408 | 4512 | 0.4299279 | 0.4296765 |
195 | 463962.6 | 5805201 | 0.83 | 6.2 | 5.2 | 60.76 | 0.0437503 | 275.97630 | 1015.8449 | 6.786711 | 1921 | 2202 | 2610 | 2795 | 2875 | 3034 | 3256 | 3207 | 4408 | 4469 | 0.4108081 | 0.4148828 |
196 | 463937.6 | 5805244 | 0.72 | 5.9 | 3.4 | 60.81 | 0.0475011 | 357.05976 | 976.2837 | 6.792520 | 1896 | 2194 | 2598 | 2761 | 2886 | 3011 | 3190 | 3193 | 4384 | 4493 | 0.3981107 | 0.3924731 |
197 | 463962.6 | 5805288 | 0.88 | 6.5 | 5.1 | 58.84 | 0.0587506 | 343.48586 | 1044.3695 | 6.713204 | 1946 | 2234 | 2632 | 2904 | 3014 | 3167 | 3316 | 3383 | 4533 | 4585 | 0.4737756 | 0.4588276 |
198 | 463937.6 | 5805331 | 0.7 | 5.8 | 4.4 | 59.58 | 0.1212497 | 327.93896 | 1102.7830 | 6.578186 | 2008 | 2304 | 2738 | 2933 | 3075 | 3192 | 3422 | 3371 | 4494 | 4573 | 0.4738929 | 0.4599018 |
199 | 463962.6 | 5805374 | 0.72 | 6.2 | 3.9 | 58.84 | 0.1487503 | 257.03497 | 1188.7334 | 6.556452 | 1964 | 2276 | 2684 | 2916 | 3041 | 3187 | 3398 | 3409 | 4393 | 4450 | 0.5341923 | 0.5164082 |
200 | 464034.3 | 5805004 | 0.81 | 6.0 | 2.9 | 56.99 | 0.1774998 | 424.93683 | 990.0257 | 6.715249 | 1847 | 2068 | 2482 | 2646 | 2745 | 2942 | 3164 | 3139 | 4384 | 4441 | 0.4824713 | 0.4613358 |
201 | 464019.1 | 5805041 | 0.77 | 5.6 | 1.2 | 56.87 | 0.1762495 | 417.96169 | 991.0215 | 6.679208 | 1842 | 2096 | 2474 | 2635 | 2725 | 2900 | 3126 | 3099 | 4305 | 4406 | 0.4539204 | 0.4411812 |
202 | 463987.6 | 5805071 | 0.91 | 6.3 | 2.7 | 57.13 | 0.1562490 | 360.01053 | 1010.8574 | 6.664298 | 1830 | 2086 | 2472 | 2641 | 2743 | 2905 | 3108 | 3103 | 4343 | 4446 | 0.4460271 | 0.4281356 |
203 | 464012.6 | 5805115 | 0.75 | 5.8 | 1.7 | 58.24 | 0.3374982 | 285.61343 | 970.9984 | 6.657176 | 1898 | 2166 | 2592 | 2790 | 2885 | 3020 | 3264 | 3221 | 4466 | 4587 | 0.4619094 | 0.4356061 |
204 | 463987.6 | 5805158 | 0.72 | 6.1 | 2.9 | 61.34 | 0.1050005 | 199.81694 | 1015.1021 | 6.700363 | 1864 | 2092 | 2478 | 2719 | 2828 | 2969 | 3132 | 3163 | 4368 | 4420 | 0.3934222 | 0.3909494 |
205 | 464012.6 | 5805201 | 0.8 | 6.0 | 3.6 | 60.50 | 0.0325003 | 342.64073 | 1000.2086 | 6.727779 | 1880 | 2136 | 2548 | 2699 | 2807 | 2941 | 3188 | 3133 | 4360 | 4409 | 0.4586218 | 0.4394013 |
206 | 463987.6 | 5805244 | 0.89 | 6.0 | 2.8 | 59.58 | 0.1787491 | 488.49277 | 977.7148 | 6.759600 | 1850 | 2116 | 2524 | 2744 | 2890 | 3009 | 3190 | 3223 | 4415 | 4473 | 0.4168421 | 0.4109015 |
207 | 464012.6 | 5805288 | 0.77 | 5.8 | 3.2 | 57.98 | 0.0737500 | 308.09603 | 1055.0146 | 6.742199 | 1884 | 2164 | 2572 | 2824 | 2937 | 3067 | 3242 | 3300 | 4459 | 4494 | 0.4545455 | 0.4445777 |
208 | 463987.6 | 5805331 | 0.77 | 6.2 | 4.2 | 57.81 | 0.1137490 | 479.51302 | 1102.3564 | 6.648838 | 1979 | 2260 | 2676 | 2907 | 3045 | 3162 | 3374 | 3385 | 4523 | 4621 | 0.5206280 | 0.4934383 |
209 | 464012.6 | 5805374 | 0.83 | 6.4 | 5.4 | 57.24 | 0.0562491 | 198.17961 | 1216.9202 | 6.596526 | 1950 | 2194 | 2622 | 2904 | 3028 | 3218 | 3364 | 3416 | 4428 | 4444 | 0.5384109 | 0.5115565 |
210 | 464089.2 | 5804977 | 0.8 | 6.1 | 1.3 | 56.20 | 0.2237501 | 327.88069 | 988.3234 | 6.778899 | 1880 | 2154 | 2516 | 2724 | 2841 | 2999 | 3176 | 3246 | 4394 | 4479 | 0.4527814 | 0.4425177 |
211 | 464068.0 | 5805009 | 1 | 5.8 | 3.4 | 55.76 | 0.2512498 | 551.46433 | 1000.5587 | 6.731104 | 1854 | 2128 | 2522 | 2721 | 2841 | 2979 | 3204 | 3203 | 4399 | 4492 | 0.4858803 | 0.4636783 |
212 | 464069.1 | 5805041 | 1.01 | 6.2 | 3.7 | 55.12 | 0.1337504 | 451.80082 | 980.9917 | 6.708382 | 1820 | 2080 | 2440 | 2630 | 2726 | 2882 | 3042 | 3099 | 4319 | 4427 | 0.4244018 | 0.4253693 |
213 | 464037.6 | 5805071 | 0.74 | 6.5 | 1.9 | 56.19 | 0.1412501 | 391.30796 | 996.7293 | 6.664606 | 1814 | 2072 | 2444 | 2679 | 2792 | 2914 | 3054 | 3166 | 4408 | 4521 | 0.4322217 | 0.4171729 |
214 | 464062.6 | 5805115 | 0.78 | 6.6 | 1.6 | 58.57 | 0.5174994 | 229.82101 | 1029.8847 | 6.668668 | 1876 | 2178 | 2608 | 2807 | 2867 | 3014 | 3304 | 3232 | 4452 | 4553 | 0.4528302 | 0.4303406 |
215 | 464037.6 | 5805158 | 0.83 | 6.1 | 4.2 | 61.40 | 0.1574998 | 288.43205 | 1026.8307 | 6.653582 | 1802 | 2078 | 2426 | 2750 | 2833 | 2977 | 3042 | 3174 | 4333 | 4413 | 0.4764222 | 0.4587962 |
216 | 464062.6 | 5805201 | 0.41 | 7.1 | 2.0 | 61.56 | 0.2199998 | 415.93423 | 938.3535 | 6.675773 | 1908 | 2216 | 2650 | 2781 | 2887 | 3032 | 3292 | 3234 | 4444 | 4538 | 0.4218009 | 0.4182162 |
217 | 464037.6 | 5805244 | 0.78 | 6.3 | 3.7 | 58.78 | 0.1275005 | 431.10081 | 996.9637 | 6.708865 | 1855 | 2128 | 2506 | 2730 | 2823 | 2966 | 3148 | 3202 | 4382 | 4424 | 0.4436484 | 0.4299065 |
218 | 464062.6 | 5805288 | 0.87 | 6.3 | 4.2 | 57.41 | 0.1050000 | 329.45758 | 1050.6372 | 6.665808 | 1882 | 2138 | 2578 | 2817 | 2914 | 3039 | 3220 | 3284 | 4424 | 4485 | 0.4761354 | 0.4587890 |
219 | 464037.6 | 5805331 | 1.13 | 6.2 | 5.4 | 57.00 | 0.0312495 | 385.17797 | 1149.2864 | 6.650809 | 1914 | 2170 | 2596 | 2790 | 2920 | 3072 | 3298 | 3302 | 4440 | 4444 | 0.5281809 | 0.4998344 |
220 | 464062.6 | 5805374 | 0.91 | 6.5 | 5.2 | 56.59 | 0.1274991 | 276.60510 | 1254.4428 | 6.594189 | 1933 | 2230 | 2642 | 2817 | 2984 | 3122 | 3376 | 3349 | 4429 | 4447 | 0.5592105 | 0.5206930 |
221 | 464118.0 | 5805009 | 1.12 | 6.0 | 3.5 | 54.46 | 0.0812497 | 426.90570 | 999.9900 | 6.786303 | 1824 | 2012 | 2382 | 2564 | 2707 | 2831 | 3054 | 3036 | 4182 | 4243 | 0.4788877 | 0.4534413 |
222 | 464119.1 | 5805041 | 1.13 | 6.4 | 3.4 | 54.62 | 0.1512504 | 272.63562 | 983.3468 | 6.768493 | 1814 | 2066 | 2428 | 2703 | 2783 | 2936 | 3058 | 3134 | 4359 | 4483 | 0.4162402 | 0.4135876 |
223 | 464087.6 | 5805071 | 0.74 | 6.3 | 3.5 | 56.50 | 0.4562502 | 277.89785 | 969.9704 | 6.707753 | 1844 | 2094 | 2458 | 2665 | 2807 | 2926 | 3120 | 3113 | 4366 | 4475 | 0.4104316 | 0.4149114 |
224 | 464112.6 | 5805115 | 0.74 | 6.3 | 1.9 | 60.34 | 0.2562499 | 282.40738 | 959.8622 | 6.718361 | 1850 | 2108 | 2510 | 2755 | 2843 | 2997 | 3162 | 3208 | 4462 | 4554 | 0.3819232 | 0.3997591 |
225 | 464087.6 | 5805158 | 0.75 | 6.9 | 4.4 | 62.57 | 0.1012492 | 356.51029 | 958.5397 | 6.666695 | 1869 | 2136 | 2532 | 2768 | 2851 | 3029 | 3134 | 3202 | 4385 | 4516 | 0.3868950 | 0.3972466 |
226 | 464112.6 | 5805201 | 0.85 | 6.4 | 4.0 | 60.60 | 0.3674994 | 291.23382 | 1000.4743 | 6.664922 | 1852 | 2104 | 2478 | 2639 | 2730 | 2886 | 3082 | 3093 | 4234 | 4284 | 0.4798511 | 0.4535050 |
227 | 464087.6 | 5805244 | 0.84 | 5.8 | 2.9 | 58.21 | 0.0787497 | 486.30881 | 985.0688 | 6.668058 | 1858 | 2114 | 2556 | 2735 | 2852 | 3001 | 3176 | 3216 | 4415 | 4496 | 0.4517863 | 0.4309754 |
228 | 464112.6 | 5805288 | 0.83 | 5.8 | 6.0 | 56.96 | 0.0062504 | 499.28811 | 1066.0815 | 6.629854 | 1888 | 2120 | 2538 | 2872 | 3000 | 3137 | 3264 | 3358 | 4534 | 4620 | 0.5245331 | 0.4975124 |
229 | 464087.6 | 5805331 | 0.77 | 6.3 | 3.3 | 56.86 | 0.0637503 | 170.04909 | 1157.8106 | 6.615912 | 1974 | 2266 | 2678 | 2890 | 2995 | 3161 | 3392 | 3379 | 4479 | 4503 | 0.5129534 | 0.4893210 |
230 | 464112.6 | 5805374 | 0.81 | 6.4 | 4.7 | 55.64 | 0.1637497 | 334.43002 | 1251.0390 | 6.611192 | 1975 | 2252 | 2710 | 2901 | 3071 | 3200 | 3464 | 3415 | 4527 | 4543 | 0.5616354 | 0.5255255 |
231 | 464158.8 | 5805050 | 1.5 | 6.3 | 4.3 | 54.51 | 0.1124997 | 314.95652 | 960.0629 | 6.810427 | 1791 | 2036 | 2408 | 2664 | 2781 | 2927 | 3042 | 3148 | 4353 | 4436 | 0.3883983 | 0.3971075 |
232 | 464144.1 | 5805084 | 0.79 | 6.4 | 5.3 | 57.71 | 0.4625006 | 251.66512 | 962.9398 | 6.775894 | 1918 | 2166 | 2604 | 2758 | 2899 | 3024 | 3266 | 3243 | 4509 | 4591 | 0.3787448 | 0.3986418 |
233 | 464162.6 | 5805115 | 0.88 | 6.6 | 3.7 | 59.29 | 0.4000001 | 271.05057 | 976.3329 | 6.777590 | 1879 | 2176 | 2598 | 2838 | 2924 | 3076 | 3272 | 3287 | 4502 | 4609 | 0.3638778 | 0.3859649 |
234 | 464137.6 | 5805158 | 0.73 | 6.1 | 3.8 | 62.55 | 0.2262506 | 405.15755 | 960.6414 | 6.706226 | 1884 | 2174 | 2568 | 2769 | 2875 | 2989 | 3242 | 3214 | 4397 | 4496 | 0.4119967 | 0.4159525 |
235 | 464162.6 | 5805201 | 0.65 | 6.3 | 4.6 | 60.03 | 0.1875005 | 354.17928 | 1035.1585 | 6.698100 | 1833 | 2072 | 2436 | 2642 | 2760 | 2898 | 3094 | 3055 | 4192 | 4305 | 0.4475643 | 0.4327808 |
236 | 464137.6 | 5805244 | 0.9 | 6.3 | 3.9 | 58.00 | 0.0825005 | 388.72864 | 1018.7238 | 6.645541 | 1838 | 2134 | 2520 | 2743 | 2846 | 3007 | 3164 | 3213 | 4377 | 4465 | 0.4618776 | 0.4416358 |
237 | 464162.6 | 5805288 | 0.76 | 5.9 | 4.6 | 57.30 | 0.0500002 | 350.80516 | 1049.7547 | 6.648909 | 1864 | 2134 | 2546 | 2833 | 2967 | 3121 | 3244 | 3308 | 4480 | 4547 | 0.4875160 | 0.4643138 |
238 | 464137.6 | 5805331 | 0.72 | 6.3 | 4.4 | 56.17 | 0.1375008 | 212.22940 | 1178.4769 | 6.630773 | 1938 | 2222 | 2662 | 2878 | 2984 | 3183 | 3402 | 3388 | 4532 | 4512 | 0.5114504 | 0.4882651 |
239 | 464162.6 | 5805374 | 0.81 | 6.3 | 3.7 | 54.83 | 0.2125006 | 308.91472 | 1221.4945 | 6.658026 | 1950 | 2230 | 2600 | 2851 | 3015 | 3200 | 3398 | 3412 | 4467 | 4432 | 0.5622607 | 0.5246637 |
240 | 464201.5 | 5805101 | 0.68 | 7.0 | 2.7 | 58.17 | 0.2700005 | 208.16758 | 1022.7004 | 6.848679 | 1867 | 2198 | 2596 | 2682 | 2781 | 2928 | 3278 | 3111 | 4275 | 4389 | 0.3705499 | 0.3856032 |
241 | 464222.7 | 5805137 | 0.82 | 6.6 | 3.5 | 58.59 | 0.1412501 | 314.00298 | 986.2434 | 6.838198 | 1826 | 2064 | 2462 | 2634 | 2728 | 2876 | 3094 | 3075 | 4226 | 4302 | 0.4196819 | 0.4137511 |
242 | 464187.6 | 5805158 | 0.84 | 6.4 | 4.5 | 60.26 | 0.2512507 | 320.40348 | 986.7638 | 6.766054 | 1808 | 2082 | 2442 | 2709 | 2805 | 2939 | 3068 | 3130 | 4276 | 4364 | 0.4121888 | 0.4155911 |
243 | 464212.6 | 5805201 | 0.72 | 7.1 | 3.6 | 60.86 | 0.1875000 | 217.42829 | 1042.2177 | 6.749089 | 1830 | 2086 | 2424 | 2615 | 2737 | 2857 | 3050 | 3036 | 4150 | 4224 | 0.4426685 | 0.4277854 |
244 | 464187.6 | 5805244 | 0.72 | 6.1 | 3.9 | 59.05 | 0.0599999 | 199.94842 | 1047.4144 | 6.686224 | 1885 | 2156 | 2528 | 2736 | 2841 | 3004 | 3182 | 3199 | 4331 | 4438 | 0.4497702 | 0.4473943 |
245 | 464212.6 | 5805288 | 0.61 | 5.9 | 4.6 | 57.15 | 0.0962486 | 423.06156 | 1054.0783 | 6.717050 | 1867 | 2128 | 2534 | 2800 | 2908 | 3106 | 3248 | 3322 | 4461 | 4538 | 0.4978723 | 0.4768436 |
246 | 464187.6 | 5805331 | 0.78 | 6.0 | 4.0 | 55.83 | 0.1250000 | 344.29574 | 1106.2357 | 6.684262 | 1946 | 2236 | 2646 | 2835 | 2954 | 3144 | 3370 | 3348 | 4441 | 4492 | 0.5449984 | 0.5078806 |
247 | 464212.6 | 5805374 | 0.82 | 6.4 | 5.2 | 53.99 | 0.2562499 | 329.43684 | 1228.8529 | 6.729391 | 1993 | 2252 | 2664 | 2875 | 3029 | 3178 | 3416 | 3408 | 4398 | 4437 | 0.5769871 | 0.5369633 |
248 | 464237.6 | 5805244 | 0.86 | 6.4 | 3.6 | 58.65 | 0.2174997 | 278.47450 | 1030.9561 | 6.759171 | 1870 | 2106 | 2490 | 2720 | 2812 | 2994 | 3156 | 3222 | 4330 | 4386 | 0.4136808 | 0.4064472 |
249 | 464237.6 | 5805331 | 0.82 | 5.7 | 4.6 | 55.27 | 0.1799998 | 265.54026 | 1130.9986 | 6.760402 | 1942 | 2210 | 2612 | 2824 | 2981 | 3126 | 3358 | 3336 | 4433 | 4449 | 0.5554524 | 0.5149141 |
250 | 463528.0 | 5804749 | 0.71 | 6.0 | 2.7 | 64.23 | 0.2837496 | 349.27214 | 1113.9435 | 6.742702 | 1950 | 2216 | 2648 | 2799 | 2909 | 3092 | 3364 | 3301 | 4475 | 4532 | 0.5102659 | 0.4833058 |
(Source of data: Schmidinger et al. (2025) “LimeSoDa: A Dataset Collection for Benchmarking of Machine Learning Regressors in Digital Soil Mapping”)
20.4.3 Build the regression tree
The model is fitted as follows:
# Example formula predicting soil organic carbon from some covariates
SOC_formula <- SOC_target ~ x_25833 + y_25833 + Altitude + Slope +
ERa + G_Total_Counts + NDVI + GNDVI
rtree_soc_model <- rpart(
formula = SOC_formula,
data = BB.250,
method = "anova"
)
20.4.4 Plot the tree
rpart.plot( rtree_soc_model,
type = 2,
fallen.leaves = TRUE,
extra = 101,
main = "Regression Tree per SOC"
)

This produces a visual representation of the tree structure, showing the splitting rules at each node, the number of observations, and the predicted value in each leaf.
20.4.5 How to interpret the regression tree model
The regression tree divides the dataset into smaller groups based on a series of simple rules. Each rule is a question about one variable — for example:
“Is ERa (Apparent Electrical Resistivity) less than 80.88?”
At each step, the data is split into two branches, forming a “tree” structure where:- Each internal node contains a decision rule (called a split).
- Each leaf node (or terminal node) provides a predicted value — the average of the SOC_target values within that group.
20.4.5.1 Example from the fitted model
The first split (at the top of the tree) is:
- ERa < 80.88
- If a data point has ERa < 80.88, it goes to the right branch, where the average SOC is about 2.09.
- Otherwise, it goes to the left branch, with a lower SOC average around 0.88.
- From there, the tree continues to split the data further — based on NDVI, GNDVI, and Altitude — refining the prediction at each step.
20.4.5.2 Which variables matter most?
The model tells us which variables were most important:
# Normalize and plot variable importance
imp <- rtree_soc_model$variable.importance
imp_norm <- imp / sum(imp)
barplot(imp_norm,
las = 2, col = "sienna",
main = "Normalized Variable Importance",
ylab = "Proportion")

This means that soil electrical resistivity (ERa), vegetation indices (NDVI and GNDVI), and altitude are the most influential in predicting SOC.
20.4.6 Predict
20.4.6.1 Predict SOC using the regression tree
BB.250$SOC_pred <- predict(rtree_soc_model, newdata = BB.250)
20.4.7 Model performance
20.4.8 In summary
- Each split makes the model more precise, dividing the data into smaller and more homogeneous groups.
- The final prediction for a location is simply the average SOC of the group (leaf) where it ends up.
- The tree helps us understand how SOC varies based on measurable factors like ERa or NDVI.
This makes regression trees very useful not only for prediction, but also for interpreting which variables matter, and how they interact in real-world data.
20.5 Model validation
Once a regression tree is fitted, it is essential to evaluate how well it performs on unseen data. This allows us to estimate its ability to generalize — that is, to make accurate predictions at locations or times that were not used to train the model.
20.5.1 Cross-validation
Cross-validation (CV) is a common and effective way to assess model performance. Instead of relying on a single split between training and validation data, CV systematically partitions the data into subsets (called folds) and rotates them through training and validation roles.
See the section Spatial Cross-Validation.
20.5.2 Performance metrics
The most common metrics to assess regression performance are:- RMSE (Root Mean Squared Error): penalizes large errors and is sensitive to outliers.
- MAE (Mean Absolute Error): provides a more robust measure of average error magnitude.
They can be computed as:
\[ \text{RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n (z_i - \hat{z}i)^2 } \qquad \text{MAE} = \frac{1}{n} \sum{i=1}^n |z_i - \hat{z}_i| \]
where \(z_i\) is the observed value and \(\hat{z}_i\) is the predicted value for location i.
In R, these metrics can be calculated using the Metrics package or custom functions (as shown in previous chapters).
20.5.3 Comparing models
Once a performance measure is defined, it becomes possible to compare the regression tree to other models:- Null model: predicts the global average (baseline).
- Linear regression: models the target as a linear combination of covariates.
- Other interpolators: e.g., nearest neighbour(s), IDW, kriging.
A table summarizing RMSE or MAE values across models can guide model selection.
20.6 Extension to the spatial context
Regression trees are not inherently spatial models. They do not exploit the geographic location of observations unless it is explicitly included as a predictor. Therefore, when applied to spatial data, a regression tree behaves as a “stepwise interpolator” — creating sharp boundaries in space where predictions change abruptly from one region to another.

Figure 20.3: Zinc concentration map from the Meuse dataset illustrating sharp transitions typical of regression tree-based spatial predictions.
This leads to predictions that are not spatially continuous, unlike geostatistical methods (e.g. kriging), which produce smooth surfaces and account for spatial autocorrelation.
20.6.1 Strengths and limitations in spatial settings
Using regression trees in spatial applications has both advantages and drawbacks:
Strengths | Limitations |
---|---|
Can handle complex, non-linear relationships | No spatial continuity in predictions |
Works well with many predictors, including categorical ones | Does not account for spatial autocorrelation |
Robust to outliers and missing data | Can create unrealistic step boundaries in space |
Interpretable and easy to visualize | Sensitive to overfitting if not pruned |
In many environmental and ecological applications, spatial structure matters — variables measured at nearby locations tend to be similar (spatial autocorrelation). Ignoring this may reduce prediction accuracy or generate artifacts in mapped outputs.
20.6.2 Making trees spatially aware: possible strategies
Several strategies can be used to adapt regression trees for spatial prediction.
20.6.2.1 Use coordinates as predictors
The simplest way to introduce spatial awareness is to include X and Y coordinates as explanatory variables:
SOC_target ~ x_25833 + y_25833 + NDVI + ERa + …
This allows the tree to “learn” spatial patterns — for example, to create splits based on longitude or latitude ranges — but it is still limited. The tree learns spatial structure indirectly and may overfit specific locations without modeling smooth transitions.
20.6.2.2 Residual kriging
A more rigorous approach is to combine regression trees with geostatistics. The idea is to:- Fit a regression tree to model the deterministic trend.
- Compute the residuals between observed and predicted values.
- Apply kriging to interpolate the residuals based on spatial autocorrelation.
- Add the kriged residuals back to the tree predictions.
This hybrid method — often called regression kriging — combines the flexibility of machine learning with the smoothness and spatial coherence of geostatistics.
20.6.2.3 Random Forest and ensembles
Random forest is an ensemble method that builds many regression trees and averages their predictions. It generally improves accuracy and reduces overfitting. While still not explicitly spatial, a random forest can better capture complex spatial patterns when coordinates and spatial covariates are included.
In practice, random forests can be paired with residual kriging in the same way as single trees, creating a powerful spatial prediction framework.
See the section Random Forests for more details.