20 Regression Tree

Understanding regression trees for environmental and spatial data modeling.

20.1 Introduction

In the context of spatial prediction and data modeling, regression trees represent a flexible, intuitive, and robust approach for dealing with non-linear relationships, missing values, and complex interactions between variables.

Unlike traditional regression models, which assume a specific mathematical form between predictors and the response, regression trees work by recursively splitting the data into increasingly homogeneous subsets based on the values of the predictor variables. These splits lead to a tree-like structure, where each terminal node (or “leaf”) corresponds to a predicted value.

General structure of regression tree.

Figure 20.1: General structure of regression tree.

This method has gained popularity across ecological, agricultural, and environmental sciences due to its interpretability, minimal assumptions, and ability to model intricate patterns — including threshold effects and interactions — without requiring prior data transformation or feature engineering. Although not inherently spatial, regression trees can be adapted for spatial data modeling by including coordinate variables or combining with geostatistical techniques.

20.2 Why is it called a “regression tree”?

Let’s break down the term “regression tree” into its two parts.

First, it is called a tree because the model is structured like a decision tree: it starts from a single root and branches out recursively based on “yes/no” or “greater/less than” questions about the predictor variables. Each split leads to a new branch, and each end-point (leaf) of the tree contains a group of data points with similar characteristics. In practice, it feels like playing a decision game:

  • “Is the slope greater than 20%?”
  • “Is NDVI less than 0.4?”
  • and so on

Each question progressively refines the prediction.

Second, it is a regression tree because it is used to predict a continuous numeric outcome — such as soil organic carbon, mean temperature, or biomass — as opposed to a classification tree, which predicts categorical outcomes (e.g., species type, land cover class, see figure below).

Classification tree to predict land cover.

Figure 20.2: Classification tree to predict land cover.

Within each leaf, the output is typically the average of the target variable for the observations falling in that group. In this sense, a regression tree is a way to learn “piecewise constant” functions — it doesn’t output a smooth mathematical equation, but a series of rule-based decisions that result in constant predictions for each region of the predictor space.

20.3 How does a regression tree work?

The core principle of a regression tree is a recursive binary partitioning of the data based on predictor variables. The algorithm searches for the optimal threshold in one of the variables that best splits the dataset into two groups, such that the variability within each group is minimized. This split is chosen by evaluating all possible thresholds for each variable and selecting the one that results in the greatest reduction of prediction error.

The most common criterion used for this purpose is the minimization of intra-node variance, i.e., the average squared deviation of the response values from their node mean. In other words, at each step, the algorithm seeks the split that creates child nodes that are as homogeneous as possible in terms of the target variable.

This process continues recursively until a stopping condition is met: for instance, a minimum number of observations in each leaf, or a minimum improvement in error reduction. However, if the tree is allowed to grow too deep, it may start to overfit the training data — that is, it memorizes noise or very specific patterns that do not generalize to new data. To prevent this, the tree can be pruned, i.e., simplified by cutting back some of the branches, often based on cross-validation or a complexity parameter, in order to strike a better balance between bias and variance.

20.4 Implementation in R

Regression trees can be implemented in R using the well-established rpart package. Visualization can be handled with rpart.plot.

20.4.1 Required packages

library(rpart)        # for model fitting
library(rpart.plot)   # for tree visualization

20.4.2 Import a dataset

Assuming we have a spatial dataset with covariates and a target variable:

BB.250 <- read.csv('datasets/BB.250.csv')

20.4.2.1 Dataset Overview

This dataset contains a variety of variables derived from laboratory analysis, remote sensing, and spatial modeling. A concise description of the variable groups is provided below:

  • Target variables: SOC, pH, and Clay are laboratory-measured properties and serve as the prediction targets.
  • Digital Elevation Model (DEM): Derived from LiDAR and photogrammetric data with a spatial resolution of 5 meters.
  • Geophysical measurements: Apparent Electrical Resistivity (ERa) and Gamma Radiation (Total Counts) were collected in the field and interpolated using ordinary kriging.
  • Reflectance Spectral Signals (RSS): Sentinel-2 spectral bands acquired over bare soil conditions.
  • Vegetation Indices (VI): Indices such as NDVI and GNDVI derived from Sentinel-2 data during the vegetation season.
Table 20.1: BB.250 Dataset (Full Table)
X x_25833 y_25833 SOC_target pH_target Clay_target Altitude Slope ERa G_Total_Counts pH_ISE B02 B03 B04 B05 B06 B07 B08 B8A B11 B12 NDVI GNDVI
1 463123.2 5804705 0.84 6.3 5.1 72.55 0.2612495 283.88306 1170.5445 6.732892 2019 2368 2852 3143 3560 3624 3714 3797 4524 4550 0.4741913 0.4661191
2 463169.1 5804694 0.61 6.0 3.4 72.34 0.2425003 304.21622 1185.2359 6.733316 2010 2310 2798 2972 3141 3265 3526 3524 4711 4822 0.4374892 0.4382333
3 463144.1 5804738 0.79 6.2 4.1 70.45 0.1812496 406.82909 1256.4166 6.778458 1988 2310 2810 3081 3203 3352 3634 3650 4873 4876 0.4824103 0.4680924
4 463169.1 5804781 0.77 6.7 4.8 68.03 0.2049990 341.54785 1232.3249 6.761032 1972 2306 2798 3006 3136 3432 3622 3648 4883 4945 0.4607366 0.4642982
5 463169.1 5804868 0.65 5.9 2.8 65.49 0.1837492 405.41499 1257.7680 6.551815 2038 2368 2862 3103 4306 4521 3728 4727 3696 3468 0.3994159 0.4273699
6 463198.2 5804662 0.58 5.9 3.5 74.23 0.1199999 533.85242 1132.7383 6.668399 1992 2368 2802 3042 3194 3314 3540 3533 4677 4790 0.3997243 0.4084605
7 463219.1 5804694 0.65 6.3 4.0 71.59 0.2487507 909.92277 1131.9628 6.725732 2042 2346 2826 3053 3197 3363 3598 3598 4868 5031 0.3683481 0.3853984
8 463194.1 5804738 0.58 6.4 3.2 70.00 0.1700010 366.57248 1080.6674 6.782501 2012 2332 2820 2986 3107 3275 3584 3504 4738 4884 0.4045643 0.4168120
9 463219.1 5804781 0.66 6.4 3.9 67.06 0.2250004 434.28382 1133.3119 6.741455 1977 2302 2748 2983 3137 3273 3500 3471 4789 4919 0.4356174 0.4422226
10 463194.1 5804824 0.64 6.4 4.3 65.94 0.1324997 475.84408 1208.5534 6.676767 1958 2230 2742 3054 3234 3440 3520 3647 4890 5036 0.4456290 0.4433209
11 463219.1 5804868 0.73 6.4 3.8 64.05 0.1224990 438.88875 1237.7501 6.590428 1910 2182 2650 2664 2770 2960 3392 3241 4670 4819 0.4405844 0.4375111
12 463194.1 5804911 0.95 6.1 5.5 63.06 0.1562495 331.31542 1294.4736 6.541923 1845 2070 2450 2830 3623 3857 3202 4182 3968 3721 0.4912594 0.4736471
13 463219.1 5804954 1.01 6.6 4.2 61.28 0.1224995 338.62425 1304.2030 6.652365 1868 2090 2448 2680 2852 2959 3222 3213 4576 4711 0.5242091 0.5034483
14 463148.8 5804816 0.8 6.4 4.4 67.52 0.0800009 540.47264 1263.1579 6.679825 1956 2464 2814 3139 3962 4067 4256 4307 4223 4139 0.3861518 0.3799503
15 463274.1 5804622 0.62 6.2 3.0 74.47 0.0937500 208.93547 1093.6202 6.619129 1982 2310 2758 3060 3142 3383 3524 3584 4761 4806 0.4495173 0.4478588
16 463244.1 5804651 0.54 6.3 2.1 74.33 0.3012514 354.53489 1091.6328 6.641480 1966 2302 2752 3042 3129 3341 3492 3563 4741 4834 0.4039801 0.4110000
17 463269.1 5804694 0.52 6.5 2.6 70.56 0.2824993 502.64409 1064.3973 6.718485 1963 2252 2716 3000 3107 3257 3444 3512 4773 4944 0.4022263 0.4052614
18 463244.1 5804738 0.58 6.3 4.7 69.00 0.2587500 485.50856 1161.6833 6.761165 1975 2308 2770 3019 3156 3279 3530 3530 4859 5008 0.3899130 0.4115154
19 463269.1 5804781 0.67 6.0 2.9 66.04 0.1875000 444.01528 1083.5679 6.676435 1974 2280 2736 2995 3128 3300 3512 3513 4896 5032 0.4647090 0.4644499
20 463244.1 5804824 0.71 5.9 1.8 64.94 0.1937513 675.96647 1154.2355 6.613087 1943 2222 2692 2942 3075 3259 3460 3488 4849 5001 0.4637707 0.4588361
21 463269.1 5804868 0.78 5.5 3.7 63.23 0.1362500 561.34947 1225.7150 6.554564 1890 2148 2584 2660 2770 2977 3346 3216 4674 4836 0.4828080 0.4806867
22 463244.1 5804911 0.96 5.9 3.6 62.21 0.1562495 417.46456 1282.2523 6.647943 1784 2004 2354 2596 2738 2893 3042 3143 4562 4768 0.4909617 0.4694459
23 463269.1 5804954 0.93 6.8 4.6 60.41 0.1274996 261.55423 1227.9391 6.866014 1848 2046 2410 2545 2720 2852 3124 3073 4307 4483 0.5223775 0.4940972
24 463244.1 5804997 1.13 7.2 7.2 60.17 0.0924993 214.22471 1327.4956 6.861070 1788 2010 2360 2451 2605 2749 3002 2911 3926 4027 0.5403641 0.5184558
25 463262.6 5805028 1.36 6.8 6.9 59.14 0.1012497 136.53027 1350.7741 7.019144 1711 1866 2168 2361 2511 2725 2792 2953 3982 4011 0.5454386 0.5156008
26 463237.6 5805071 1.19 6.4 5.7 59.17 0.0549994 178.96968 1342.0250 6.878581 1667 1948 2152 2397 2910 3345 3336 3579 3737 3651 0.4664790 0.4473776
27 463262.6 5805115 1.75 7.2 9.3 58.68 0.1062498 87.62483 1406.8092 7.019442 1608 1800 2094 2185 2570 2655 2846 2896 3772 3686 0.6139351 0.5694487
28 463319.1 5804608 0.81 6.4 8.8 74.10 0.0962486 57.80892 1238.1165 6.670382 1892 2178 2636 2943 3051 3254 3254 3430 4598 4554 0.4856771 0.4765448
29 463294.1 5804651 0.66 5.8 2.4 72.18 0.3974991 514.80166 1056.4696 6.676565 2036 2364 2832 3014 3165 3306 3624 3529 4789 4838 0.4769028 0.4651011
30 463319.1 5804694 0.63 5.9 4.9 68.51 0.2425003 629.99310 1075.5188 6.777109 1980 2296 2764 2956 3079 3255 3544 3498 4800 4922 0.4438503 0.4424040
31 463294.1 5804738 0.61 6.5 3.8 67.23 0.2325001 589.01161 1109.2969 6.753284 1954 2224 2692 2986 3073 3259 3424 3494 4824 4959 0.4498991 0.4416583
32 463319.1 5804781 0.79 5.7 3.5 65.23 0.1312504 309.97155 1192.6653 6.650025 1968 2274 2720 2990 3099 3246 3478 3516 4844 4981 0.5283514 0.5068670
33 463294.1 5804824 0.81 5.4 3.2 64.16 0.1262498 655.00111 1205.6820 6.520656 1955 2248 2742 2980 3113 3273 3502 3513 4879 4999 0.5339806 0.5096356
34 463319.1 5804868 0.91 5.7 4.5 62.33 0.1725001 367.96985 1241.3692 6.517238 1890 2168 2608 2754 2883 3076 3404 3335 4763 4888 0.5224681 0.5008264
35 463294.1 5804911 0.96 5.7 4.7 60.95 0.2187505 350.15519 1292.8367 6.707912 1921 2130 2544 2674 2786 2939 3276 3203 4580 4766 0.5276663 0.5181266
36 463319.1 5804954 1.43 7.1 7.2 59.44 0.0587506 136.67012 1408.1845 7.004392 1827 1984 2306 2432 2542 2698 2970 2868 3903 3992 0.6195200 0.5852780
37 463294.1 5804997 1.48 7.1 6.7 59.03 0.1737499 115.22693 1326.0413 7.119768 1674 1820 2088 2385 2510 2668 2696 2827 3804 3902 0.6429232 0.6091815
38 463312.6 5805028 1.64 7.2 7.6 58.43 0.1037502 55.81483 1363.2977 7.286209 1634 1776 2042 2223 2345 2524 2632 2738 3950 3945 0.6517205 0.6151493
39 463287.6 5805071 1.85 7.3 10.8 58.36 0.0450001 77.63236 1339.8493 7.190218 1697 1869 2182 2324 2509 2707 2882 2919 4006 3956 0.6596882 0.6237653
40 463312.6 5805115 1.69 7.2 11.7 58.26 0.0525012 65.78011 1292.3300 7.213527 1610 1776 2046 2196 2375 2506 2692 2767 3922 3905 0.6601539 0.6215122
41 463287.6 5805158 1.39 7.1 9.4 58.87 0.1137505 83.23549 1320.5339 7.016883 1634 1842 2080 2224 2344 2485 2852 2756 4034 3892 0.5890183 0.5510801
42 463312.6 5805201 1.17 6.6 8.1 59.56 0.0787506 120.49092 1324.9824 6.910338 1704 1870 2182 2457 2512 2750 2974 3003 4304 4214 0.5649516 0.5329341
43 463312.6 5805288 0.89 6.9 6.0 59.87 0.0274997 320.48392 1338.5972 6.854764 1944 2238 2676 2721 4372 4869 3530 5017 3115 2854 0.4953011 0.4981691
44 463369.1 5804608 0.89 6.1 10.4 72.79 0.2174997 225.09859 1089.7800 6.762279 1872 2152 2584 2885 3018 3151 3262 3348 4459 4423 0.5095323 0.4862827
45 463344.1 5804651 0.71 6.4 7.9 70.04 0.3349991 531.28283 1068.2773 6.766811 2011 2310 2802 2963 3055 3287 3510 3460 4599 4714 0.4265641 0.4327957
46 463369.1 5804694 0.79 6.5 3.8 67.14 0.1900005 547.76121 1049.8085 6.793718 1908 2210 2640 2842 2966 3145 3342 3355 4655 4838 0.5256012 0.5049217
47 463344.1 5804738 0.84 6.2 4.0 65.98 0.1374998 401.30888 1125.6015 6.790218 1902 2206 2672 2872 2998 3164 3370 3394 4764 4888 0.4946183 0.4862506
48 463369.1 5804781 1.02 5.7 2.8 64.31 0.1162510 185.42679 1186.9914 6.680550 1924 2202 2618 2820 2952 3099 3332 3361 4589 4647 0.5504202 0.5277070
49 463344.1 5804824 0.77 5.7 4.9 63.60 0.1412506 254.36738 1154.7875 6.546160 1946 2190 2634 2867 2983 3142 3366 3406 4763 4876 0.5212557 0.5052580
50 463369.1 5804868 1.12 6.4 3.7 61.62 0.1587496 215.01121 1229.1417 6.606883 1939 2190 2624 2819 2928 3096 3364 3316 4650 4777 0.5443661 0.5196901
51 463344.1 5804911 1.01 6.7 4.8 60.06 0.1624999 285.99590 1270.4820 6.713407 1880 2104 2514 2562 2700 2851 3188 3058 4279 4325 0.5854939 0.5507156
52 463369.1 5804954 1.78 7.4 12.6 58.70 0.1225004 68.16069 1438.2642 7.048402 1737 1878 2142 2241 2362 2518 2726 2728 3781 3702 0.6663910 0.6153949
53 463344.1 5804997 1.61 7.2 10.5 58.53 0.0574999 79.78436 1489.6332 7.271537 1625 1796 2060 2262 2357 2500 2684 2722 3804 3803 0.6436129 0.6008962
54 463362.6 5805028 1.98 7.3 10.7 57.87 0.1137505 61.61947 1491.7545 7.377023 1574 1692 1926 2102 2205 2347 2560 2591 3868 3838 0.6615038 0.6076294
55 463337.6 5805071 1.96 7.4 8.7 57.89 0.0350003 70.41354 1304.4460 7.353888 1666 1827 2112 2294 2405 2576 2760 2826 3971 3963 0.6580003 0.6131830
56 463362.6 5805115 1.51 7.4 11.4 58.04 0.0937495 57.27010 1380.2259 7.211137 1643 1758 2028 2300 2404 2526 2650 2791 4078 4046 0.6408364 0.6074710
57 463337.6 5805158 1.26 6.9 12.1 58.97 0.1087489 75.33991 1327.4143 7.018883 1651 1862 2176 2242 2338 2523 2824 2760 4050 4018 0.5939948 0.5519542
58 463362.6 5805201 1.02 6.1 6.1 59.01 0.0387516 182.08780 1259.4245 6.805560 1836 2062 2404 2694 2838 3009 3216 3253 4591 4673 0.5250132 0.5093815
59 463337.6 5805244 1.15 6.4 6.6 59.19 0.0274992 187.69984 1370.8010 6.825978 1844 2088 2480 2840 2930 3185 3304 3418 4595 4624 0.5678887 0.5350615
60 463362.6 5805288 0.91 6.4 7.1 60.26 0.0874996 159.41856 1401.7567 6.817807 1969 2246 2722 2900 3036 3206 3452 3397 4539 4590 0.5227429 0.5069054
61 463337.6 5805331 0.97 6.3 6.7 59.97 0.0924988 248.06975 1371.9776 6.837788 1972 2246 2706 2839 3528 3756 3552 3974 3985 3801 0.5330487 0.5141700
62 463362.6 5805374 0.8 6.5 6.3 59.63 0.0899997 314.88365 1377.6456 6.785805 2016 2302 2758 3010 3209 3371 3604 3623 4668 4720 0.4768166 0.4780952
63 463394.1 5804564 0.83 6.1 3.3 70.63 0.2424984 497.93137 969.5480 6.796362 1868 2218 2694 2989 3116 3288 3496 3473 4610 4618 0.3595028 0.3734303
64 463419.1 5804608 0.8 6.3 6.6 71.17 0.3787508 117.75316 1194.7171 6.827658 1973 2244 2710 2920 3024 3187 3476 3391 4492 4514 0.4887417 0.4668842
65 463394.1 5804651 0.65 6.0 2.6 68.78 0.2399998 488.78637 1049.0889 6.799809 1944 2248 2704 2962 3102 3287 3510 3450 4744 4866 0.4501101 0.4381720
66 463419.1 5804694 0.84 5.9 5.3 66.97 0.0974989 280.66584 1109.4204 6.805694 1914 2208 2648 2864 2988 3164 3382 3386 4608 4668 0.5448635 0.5169992
67 463394.1 5804738 0.98 6.3 3.8 65.35 0.1250000 310.02624 1172.2114 6.780546 1930 2188 2628 2824 2956 3090 3308 3319 4566 4654 0.5606304 0.5325332
68 463419.1 5804781 1.1 6.3 8.0 63.72 0.1825008 121.17439 1244.2248 6.752487 1928 2248 2656 2846 2957 3128 3348 3354 4550 4576 0.5840203 0.5527584
69 463394.1 5804824 0.9 5.5 3.9 62.86 0.1137495 282.68969 1204.1554 6.611118 1954 2194 2676 2889 3001 3143 3398 3396 4661 4776 0.5891755 0.5561754
70 463419.1 5804868 0.97 6.4 8.1 61.15 0.1687493 115.83539 1229.2918 6.793893 1928 2180 2624 2790 2910 3071 3326 3298 4445 4580 0.5312449 0.5060494
71 463394.1 5804911 1.01 6.4 4.4 59.69 0.1249995 200.21414 1321.7875 6.863470 1881 2052 2414 2392 2522 2667 3030 2878 3853 3836 0.5855856 0.5479818
72 463419.1 5804954 1.78 7.1 9.0 58.26 0.0762501 69.07130 1256.0558 7.136433 1656 1794 2066 2151 2261 2424 2726 2649 3819 3796 0.6773406 0.6257233
73 463387.6 5804985 1.82 7.1 11.0 58.07 0.0437498 62.64422 1410.7650 7.221829 1616 1772 2060 2199 2298 2435 2678 2664 3875 3826 0.6537082 0.6031150
74 463412.6 5805028 3.16 7.4 12.3 57.41 0.0224996 55.93398 1335.1514 7.353502 1576 1730 1950 2124 2228 2371 2542 2579 3878 3852 0.6691604 0.6224078
75 463387.6 5805071 2.72 7.4 14.8 57.51 0.0099988 54.78349 1394.9452 7.339515 1615 1735 1972 2131 2226 2380 2572 2627 3906 3878 0.6640812 0.6133443
76 463412.6 5805115 1.41 6.8 10.6 58.19 0.0950003 81.97400 1359.5303 7.050184 1672 1820 2098 2344 2477 2625 2778 2896 4191 4133 0.6506461 0.6056497
77 463387.6 5805158 1.06 6.0 8.0 59.03 0.0412493 103.70253 1357.2603 6.886902 1719 1924 2254 2405 2511 2702 2974 2916 4194 4129 0.5886691 0.5593945
78 463412.6 5805201 0.89 5.8 7.8 59.00 0.1450000 110.20900 1417.1538 6.650871 1834 2112 2510 2740 2861 2991 3254 3236 4545 4519 0.5240055 0.5095109
79 463387.6 5805244 0.91 6.0 5.8 59.94 0.0662503 277.15511 1265.7415 6.730685 1954 2252 2710 2966 3076 3259 3452 3489 4685 4781 0.4583990 0.4589101
80 463412.6 5805288 0.73 6.3 3.5 60.30 0.0599999 190.40388 1358.1637 6.787226 1966 2290 2750 2990 3127 3282 3484 3537 4689 4790 0.5134113 0.4994889
81 463387.6 5805331 0.79 6.6 4.5 60.05 0.1250010 414.78232 1375.3063 6.825928 2023 2356 2818 3044 3162 3353 3640 3551 4726 4817 0.5267903 0.5146811
82 463412.6 5805374 0.8 5.9 11.9 59.64 0.1062498 267.93243 1426.9886 6.752378 2009 2330 2792 3026 3171 3325 3578 3542 4633 4721 0.5091774 0.4957049
83 463444.1 5804564 0.63 6.6 3.9 69.94 0.2375002 693.72278 790.6023 6.880600 1856 2228 2702 2789 2939 3100 3396 3276 4420 4332 0.3064516 0.3353116
84 463469.1 5804608 0.72 6.7 3.1 68.14 0.2687492 446.62110 1036.8473 6.864885 1955 2270 2710 2795 2935 3091 3424 3261 4467 4447 0.4873634 0.4767718
85 463444.1 5804651 0.8 5.8 4.6 67.93 0.0824995 461.87865 1088.2814 6.819734 1987 2290 2750 3028 3169 3331 3544 3555 4757 4874 0.5227989 0.4972286
86 463469.1 5804694 0.89 5.8 6.1 67.17 0.0912495 83.89641 1222.5409 6.750419 1920 2214 2630 2858 2983 3149 3374 3376 4457 4470 0.5952897 0.5628415
87 463444.1 5804738 1.01 6.2 7.1 65.45 0.1587515 88.16160 1217.7181 6.750646 1929 2196 2628 2821 2937 3078 3344 3316 4460 4448 0.6086287 0.5685096
88 463469.1 5804781 0.94 6.0 5.5 63.12 0.1624999 158.48519 1173.9261 6.773363 1893 2124 2590 2786 2905 3077 3310 3304 4532 4544 0.5837260 0.5489322
89 463444.1 5804824 0.99 6.3 5.0 62.08 0.1100011 144.35661 1219.6687 6.795249 1924 2190 2608 2822 2947 3100 3342 3347 4618 4685 0.5960347 0.5616854
90 463469.1 5804868 1.27 6.8 5.7 60.52 0.1174994 128.52191 1232.0866 7.048964 1834 2022 2394 2568 2680 2808 3016 3014 3983 4036 0.6277761 0.5818705
91 463444.1 5804911 1.48 6.8 6.1 59.04 0.1537499 129.81597 1289.6311 7.117906 1792 1988 2300 2406 2520 2668 2824 2872 3884 3927 0.5858179 0.5505830
92 463469.1 5804932 1.6 7.3 6.2 58.03 0.1187506 65.02794 1187.1534 7.287864 1688 1868 2156 2319 2431 2544 2806 2798 3961 4025 0.6657534 0.6148738
93 463417.3 5804987 2.42 7.3 12.9 57.72 0.0775003 45.48428 1393.0189 7.259055 1574 1716 1956 2100 2207 2366 2550 2598 3754 3732 0.6682779 0.6197372
94 463462.6 5805044 2.82 7.4 10.1 57.23 0.0350008 39.59307 1326.4870 7.370984 1752 1878 2232 2202 2251 2414 2820 2615 3877 3931 0.6623121 0.6162251
95 463437.6 5805071 3.13 7.5 16.2 57.32 0.0387502 65.77803 1284.1161 7.291442 1602 1744 1974 2128 2218 2354 2512 2579 3930 3939 0.6695652 0.6197108
96 463462.6 5805115 1.63 7.2 8.8 57.86 0.1349998 76.05850 1438.9688 7.016274 1644 1766 2054 2263 2370 2542 2652 2781 4077 4050 0.6462684 0.6073007
97 463437.6 5805158 1.33 5.8 6.6 58.82 0.0687499 129.72247 1366.4189 6.745273 1726 1916 2260 2401 2511 2665 2986 2922 4243 4158 0.6071772 0.5662763
98 463462.6 5805201 1.23 5.8 7.0 59.04 0.1162496 142.07825 1461.1715 6.580373 1796 2030 2408 2595 2733 2900 3108 3127 4378 4332 0.5482158 0.5256788
99 463437.6 5805244 1.17 6.4 7.5 60.15 0.0337505 87.56203 1563.9678 6.626196 1904 2192 2620 2986 3085 3263 3366 3462 4734 4769 0.5155875 0.5055300
100 463462.6 5805288 0.95 6.1 6.2 60.02 0.0462499 164.06361 1444.5413 6.692768 1928 2190 2654 2980 3094 3285 3350 3530 4709 4720 0.5474524 0.5229093
101 463437.6 5805331 0.72 6.0 4.5 60.28 0.0312490 131.56674 1477.0884 6.759448 1922 2236 2676 3005 3140 3274 3390 3484 4600 4649 0.5203745 0.5008559
102 463462.6 5805374 0.89 6.0 4.5 60.10 0.0712495 328.48193 1415.5441 6.687316 1996 2320 2804 2981 3121 3313 3590 3559 4668 4753 0.5441892 0.5310941
103 463494.1 5804651 0.87 6.0 5.1 67.55 0.0337477 125.10376 1138.8122 6.788760 1908 2162 2538 2824 2908 3082 3258 3263 4391 4428 0.5855624 0.5418364
104 463519.1 5804694 0.9 6.1 4.9 66.49 0.1162491 263.16166 1130.7420 6.720321 1930 2180 2592 2800 2909 3065 3276 3261 4310 4274 0.5688838 0.5308563
105 463494.1 5804738 0.91 6.5 5.2 65.04 0.2012501 159.35400 1179.1147 6.731754 1958 2224 2622 2829 2958 3115 3334 3357 4518 4493 0.5913910 0.5513730
106 463519.1 5804781 0.74 6.3 5.0 62.59 0.1512494 388.40984 1129.6663 6.820396 1894 2146 2542 2854 3007 3135 3276 3333 4617 4715 0.6097561 0.5671233
107 463494.1 5804824 0.95 6.9 7.7 61.52 0.1362495 249.10863 1185.4905 6.937549 1884 2104 2490 2729 2832 2960 3230 3245 4431 4531 0.5717916 0.5435969
108 463519.1 5804868 1.48 7.2 3.3 59.90 0.1762495 93.90455 1222.2550 7.175188 1791 1982 2334 2366 2481 2611 2904 2854 3893 3902 0.6359577 0.5884393
109 463494.1 5804911 1.4 7.0 5.4 58.50 0.1287494 104.08597 1224.0041 7.300752 1725 1897 2198 2343 2462 2615 2838 2872 4016 4029 0.6406661 0.5909348
110 463512.6 5804941 2.34 7.4 7.6 57.65 0.0449996 36.95679 1124.7133 7.394449 1643 1762 1994 2299 2303 2547 2596 2748 3967 4032 0.6650691 0.6016860
111 463489.0 5804998 1.79 7.3 8.6 57.44 0.0787501 44.72649 1237.2641 7.441678 1676 1857 2062 2197 2960 2945 2768 3244 3723 3454 0.6161240 0.5665765
112 463512.6 5805028 2.27 7.4 15.9 57.24 0.0499988 71.00161 1232.1745 7.448153 1674 1845 2102 2228 2467 2524 2676 2790 3926 3856 0.6574477 0.6023344
113 463487.6 5805071 2.81 7.4 16.1 57.24 0.0249996 59.92226 1249.1956 7.288977 1678 1827 2090 2150 2240 2338 2646 2566 3891 3938 0.6739247 0.6230940
114 463512.6 5805115 1.56 6.9 6.2 57.82 0.0612507 96.26552 1284.8643 7.056897 1637 1796 2036 2362 2458 2594 2660 2829 4156 4171 0.6309851 0.5885935
115 463487.6 5805158 1.11 6.0 6.8 58.56 0.0512495 122.26806 1364.1095 6.722092 1788 2010 2388 2451 2565 2723 3058 2955 4225 4193 0.5750328 0.5491460
116 463512.6 5805201 0.87 5.8 6.9 59.01 0.0912514 179.68730 1377.5330 6.549329 1864 2152 2590 2734 2841 2993 3276 3224 4479 4458 0.5441370 0.5173976
117 463487.6 5805244 0.92 5.9 7.0 59.80 0.0462494 176.82521 1438.6507 6.603609 1910 2176 2612 2834 2984 3136 3356 3386 4608 4648 0.5553743 0.5311496
118 463512.6 5805288 0.82 6.1 6.6 60.47 0.0487509 114.49289 1429.7880 6.631100 1948 2218 2672 2936 3034 3238 3388 3440 4610 4656 0.5761737 0.5465371
119 463487.6 5805331 0.86 6.0 6.0 60.44 0.0762515 212.90986 1384.9897 6.675665 1978 2270 2712 3003 3127 3308 3490 3494 4669 4697 0.5498877 0.5244557
120 463512.6 5805374 1 6.3 6.3 60.75 0.0925002 264.73054 1290.1573 6.655729 1928 2216 2636 2910 3055 3269 3354 3428 4612 4686 0.5771737 0.5471698
121 463544.1 5804824 1.23 7.1 6.4 61.19 0.0937505 161.83044 1144.5785 6.984307 1872 2038 2350 2461 2558 2811 3042 2916 3794 3767 0.6463626 0.5961377
122 463569.1 5804868 1.41 7.3 5.2 59.77 0.1450000 135.44327 1145.5539 7.131771 1718 1892 2172 2381 2507 2640 2830 2864 4033 4040 0.6824832 0.6092074
123 463544.1 5804911 1.59 7.2 12.0 58.33 0.1050005 57.93237 1163.7498 7.332167 1657 1796 2028 2137 2269 2411 2710 2649 3836 3754 0.6700374 0.6191244
124 463562.6 5804941 2.49 7.4 7.0 57.56 0.0412502 48.52231 1203.2409 7.379164 1596 1744 1948 2080 2207 2333 2508 2547 3791 3739 0.6834040 0.6208668
125 463537.6 5804985 3.06 7.5 10.2 57.43 0.0200009 55.93960 1132.1643 7.456781 1602 1730 1960 2184 2254 2412 2522 2626 3926 3963 0.6614045 0.5991616
126 463562.6 5805028 2.53 7.5 12.6 57.16 0.0437508 62.03869 1234.1593 7.403219 1602 1718 1936 2096 2162 2286 2532 2527 3803 3801 0.6568448 0.5934915
127 463537.6 5805071 1.72 7.2 7.4 57.70 0.1524997 72.74217 1262.3662 7.313991 1620 1767 2046 2090 2237 2360 2632 2593 3997 4065 0.6041032 0.5596073
128 463562.6 5805115 1.21 6.3 5.4 57.85 0.1100011 127.33624 1267.9595 7.067966 1756 1948 2248 2605 2729 2864 2930 3117 4424 4448 0.6053375 0.5633695
129 463537.6 5805158 1 6.0 6.6 58.34 0.0624995 232.64720 1301.7935 6.787254 1830 2064 2440 2545 2637 2824 3166 3076 4309 4329 0.5712435 0.5442393
130 463562.6 5805201 0.87 6.1 5.4 59.29 0.0924997 323.03271 1287.0772 6.638816 1874 2170 2642 2869 2986 3128 3384 3372 4676 4738 0.5654849 0.5405448
131 463537.6 5805244 0.95 5.8 4.6 59.87 0.0650005 187.02540 1300.4915 6.567674 1920 2236 2700 2907 3025 3182 3386 3418 4587 4653 0.5629820 0.5380237
132 463562.6 5805288 0.77 5.9 2.3 61.60 0.1137495 323.09171 1119.8698 6.610454 2013 2288 2782 3012 3150 3298 3552 3535 4778 4861 0.4746483 0.4636364
133 463537.6 5805331 0.92 6.1 8.3 61.34 0.2087493 159.67189 1298.6889 6.627419 1922 2184 2638 2909 2996 3197 3354 3381 4547 4578 0.6063862 0.5744809
134 463562.6 5805374 0.8 6.2 6.4 61.89 0.1949997 388.71387 1143.0183 6.661456 1954 2250 2694 2893 3049 3235 3426 3435 4598 4727 0.4452994 0.4400000
135 463587.6 5804898 1.03 6.3 6.3 58.86 0.1275001 130.20053 1182.4615 7.169967 1705 1874 2152 2368 2496 2676 2820 2894 4027 3998 0.6456799 0.5932499
136 463601.8 5804947 1.49 6.8 6.5 57.81 0.0124998 118.99471 1186.0694 7.206483 1610 1754 1946 2210 2324 2488 2620 2710 4011 4017 0.6637347 0.6067400
137 463587.6 5804985 2.21 7.2 7.1 57.64 0.0275002 69.43207 1208.4539 7.318411 1567 1692 1890 2045 2201 2317 2476 2503 3753 3782 0.6304878 0.5759540
138 463612.6 5805028 1.78 6.8 7.2 57.52 0.0999994 133.76059 1239.0210 7.169884 1584 1694 1918 2059 2142 2270 2450 2482 3799 3853 0.6238058 0.5697199
139 463587.6 5805071 2.74 7.2 14.0 57.35 0.0437493 62.89901 1360.7079 7.182036 1651 1766 2042 2130 2267 2391 2636 2626 4027 4035 0.5850461 0.5494384
140 463612.6 5805115 1.2 6.6 7.5 57.97 0.0862498 158.15175 1270.1886 6.932949 1727 1874 2196 2523 2657 2777 2858 3046 4313 4350 0.5797460 0.5408623
141 463587.6 5805158 1.06 6.1 5.4 58.66 0.1200004 199.11154 1262.0122 6.801995 1872 2118 2550 2679 2808 2974 3286 3192 4471 4536 0.5549806 0.5316980
142 463612.6 5805201 0.8 5.8 4.9 59.93 0.1024990 315.44639 1252.1190 6.719218 1910 2186 2660 2887 3003 3158 3392 3396 4700 4784 0.5418904 0.5193972
143 463587.6 5805244 0.74 6.1 3.5 60.49 0.0912509 400.65960 1145.8750 6.642469 1950 2248 2702 2998 3115 3270 3454 3514 4868 5007 0.5440195 0.5207565
144 463612.6 5805288 0.52 6.3 3.2 62.12 0.0587506 494.78533 1035.8148 6.716818 1990 2296 2762 2955 3065 3245 3530 3464 4794 4970 0.4337662 0.4370322
145 463587.6 5805331 0.57 6.6 1.8 63.16 0.0512495 255.23615 1114.6776 6.678369 1924 2262 2716 2955 3085 3227 3468 3446 4709 4857 0.4466897 0.4358389
146 463612.6 5805374 0.67 7.0 5.6 62.97 0.1850004 240.56692 1112.5206 6.754630 1932 2210 2628 2846 2981 3150 3382 3366 4571 4741 0.4262566 0.4260208
147 463637.6 5805071 1.27 6.3 6.5 57.47 0.0450001 197.79463 1207.0716 6.952288 1720 1878 2144 2177 2298 2446 2760 2682 4000 4027 0.5599865 0.5186708
148 463662.6 5805115 0.78 5.8 5.9 57.98 0.0949993 203.84794 1214.5487 6.766295 1816 2052 2448 2605 2689 2836 3074 3028 4203 4215 0.5374893 0.5061067
149 463637.6 5805158 0.91 6.6 6.6 59.32 0.1112509 117.61061 1306.8628 6.755830 1803 2042 2444 2660 2774 2923 3088 3187 4431 4453 0.5444780 0.5134868
150 463662.6 5805201 0.71 6.1 4.3 60.49 0.1062503 216.18767 1177.2206 6.756177 1943 2218 2628 2812 2928 3069 3312 3279 4547 4641 0.4857143 0.4660178
151 463637.6 5805244 0.85 6.5 3.0 61.23 0.0812502 421.01518 1180.4252 6.768052 1926 2220 2698 3053 3180 3325 3452 3609 4890 5055 0.5146526 0.4925373
152 463662.6 5805288 0.81 6.4 4.5 61.84 0.0949998 228.28751 1141.6795 6.851031 1946 2242 2672 2865 2975 3156 3398 3367 4673 4788 0.4838063 0.4676354
153 463637.6 5805331 0.73 6.3 3.0 61.19 0.1300006 422.32591 1038.5827 6.806584 1900 2186 2632 2914 3061 3183 3336 3442 4708 4868 0.4098637 0.4115268
154 463662.6 5805374 0.6 6.1 2.7 61.84 0.1037507 263.48489 1043.4323 6.850850 1956 2254 2704 2922 3039 3221 3502 3451 4706 4857 0.4569362 0.4441186
155 463661.3 5805067 0.85 6.1 5.3 57.71 0.0337501 199.82453 1148.7023 6.850561 1836 2001 2296 2436 2524 2660 2956 2926 4142 4197 0.4831304 0.4645372
156 463712.6 5805115 0.86 5.8 5.8 57.56 0.0937500 233.46077 1131.9118 6.643258 1846 2064 2454 2652 2754 2910 3070 3146 4315 4331 0.4985189 0.4802065
157 463687.6 5805158 0.84 6.3 5.0 58.89 0.1837497 234.13663 1159.0834 6.683413 1850 2118 2500 2645 2768 2916 3108 3098 4274 4279 0.4955203 0.4782016
158 463712.6 5805201 0.82 6.5 3.9 59.94 0.1662502 434.43134 1084.1440 6.727150 1916 2216 2620 2797 2933 3053 3268 3257 4457 4531 0.4848588 0.4673840
159 463687.6 5805244 0.78 6.1 2.5 61.98 0.0887504 234.28404 1101.4893 6.818412 1927 2222 2684 2887 2963 3174 3348 3303 4531 4622 0.4540278 0.4491738
160 463712.6 5805288 0.59 6.5 3.3 61.34 0.0874996 358.83170 1093.8935 6.866570 1952 2216 2650 2739 2804 3014 3324 3219 4382 4507 0.4354644 0.4181137
161 463687.6 5805331 0.84 6.6 4.4 60.36 0.1012502 394.30945 1064.9895 6.883670 1875 2172 2594 2806 2939 3086 3316 3305 4601 4760 0.4674715 0.4456558
162 463712.6 5805374 0.57 5.9 2.5 60.61 0.0937500 464.05772 1034.1321 6.868661 1938 2266 2696 2926 3046 3252 3470 3419 4685 4853 0.3947020 0.4021305
163 463214.6 5805009 1.02 6.5 7.5 60.38 0.0862503 246.55051 1344.9051 6.683669 1805 2019 2392 2581 2760 3115 3194 3379 4154 4226 0.5150461 0.5012065
164 463762.6 5805115 0.91 6.2 4.6 57.51 0.0900011 271.10841 1099.4354 6.623403 1839 2076 2462 2687 2801 2937 3060 3146 4329 4393 0.5072667 0.4815835
165 463737.6 5805158 0.83 6.2 4.8 59.11 0.1037498 284.24933 1128.1129 6.653250 1874 2094 2500 2684 2764 2913 3120 3092 4227 4255 0.5304107 0.5081967
166 463762.6 5805201 0.79 6.0 2.9 59.32 0.0474992 489.42159 1081.3981 6.734506 1928 2150 2554 2781 2860 3019 3232 3244 4430 4508 0.5031469 0.4780815
167 463737.6 5805244 0.8 6.4 7.7 61.55 0.2562499 156.14031 1101.8771 6.797244 1932 2262 2688 2831 2949 3054 3316 3300 4385 4431 0.4762221 0.4667107
168 463762.6 5805288 0.7 6.1 3.8 61.23 0.1537499 248.96839 1161.4840 6.763531 1914 2166 2584 2822 2917 3056 3226 3282 4418 4500 0.4643466 0.4514711
169 463737.6 5805331 0.57 6.2 2.9 60.03 0.0774999 513.36578 1068.1898 6.825418 1888 2182 2636 2773 2879 3028 3300 3252 4454 4597 0.4555404 0.4520641
170 463762.6 5805374 0.54 6.4 1.8 59.69 0.0387497 335.20815 1077.0669 6.730819 1949 2266 2672 2871 2971 3158 3420 3358 4487 4545 0.4678432 0.4540259
171 463787.6 5805158 0.68 6.1 2.7 59.36 0.0812492 336.53319 1051.3261 6.687310 1886 2144 2526 2754 2839 3013 3178 3201 4421 4480 0.4453379 0.4450907
172 463812.6 5805201 0.98 6.0 6.1 58.78 0.0875006 508.59832 1044.9392 6.741808 1893 2144 2534 2759 2828 3004 3158 3190 4367 4461 0.4272517 0.4297918
173 463787.6 5805244 0.76 6.5 4.5 60.20 0.0937500 443.54071 1051.5430 6.727672 1902 2224 2660 2734 2818 2954 3280 3141 4276 4366 0.4222820 0.4306964
174 463812.6 5805288 0.75 6.0 3.9 59.38 0.1324997 480.40858 1083.8094 6.651502 1892 2172 2560 2856 2950 3069 3244 3329 4460 4528 0.4269231 0.4192314
175 463787.6 5805331 0.75 5.2 2.8 59.25 0.0974994 469.55138 1104.1070 6.667091 1938 2186 2608 2840 2949 3119 3316 3337 4466 4539 0.5093039 0.4923339
176 463812.6 5805374 0.69 5.8 4.3 59.31 0.0162487 308.27369 1176.2606 6.552788 1980 2284 2716 2878 3038 3203 3448 3412 4477 4495 0.4900585 0.4772238
177 463837.6 5805158 0.86 6.2 3.5 59.03 0.0350003 261.23927 1040.4570 6.757152 1905 2194 2572 2782 2884 3024 3218 3233 4444 4550 0.4503817 0.4398898
178 463862.6 5805201 0.96 6.4 4.2 58.71 0.0275002 594.50480 1059.8442 6.799743 1907 2164 2540 2761 2855 3024 3126 3215 4442 4556 0.4773419 0.4598230
179 463837.6 5805244 0.57 6.6 3.4 59.99 0.0925007 304.30478 991.2611 6.695878 1912 2186 2632 2779 2866 3023 3266 3226 4414 4488 0.4170404 0.4141136
180 463862.6 5805288 0.87 6.0 4.6 58.43 0.0500002 582.55978 1092.2574 6.618117 1886 2166 2566 2810 2925 3051 3210 3270 4395 4464 0.4740363 0.4624520
181 463837.6 5805331 0.88 5.1 3.4 58.72 0.0487509 560.52120 1094.3056 6.525579 1926 2204 2606 2841 2950 3112 3370 3331 4455 4523 0.5202312 0.4953177
182 463862.6 5805374 0.73 5.3 3.0 59.44 0.0550008 400.98755 1116.1966 6.458205 1983 2274 2688 2904 3058 3205 3448 3417 4454 4519 0.4677447 0.4535446
183 464238.1 5805176 0.77 6.3 4.4 60.97 0.1550012 204.29248 1042.4866 6.814159 1963 2250 2688 2779 2901 3056 3410 3237 4467 4567 0.3773987 0.3959441
184 463928.9 5805104 0.98 5.8 3.7 59.63 0.0524998 366.22933 978.3690 6.716652 1848 2072 2452 2700 2802 2965 3074 3155 4418 4494 0.4194360 0.4098127
185 463887.6 5805158 0.85 6.4 4.5 59.89 0.1762505 174.90659 1071.5878 6.791008 1896 2154 2560 2767 2912 3072 3134 3293 4366 4433 0.4051578 0.4154845
186 463912.6 5805201 1 6.2 4.0 59.73 0.1174998 338.95689 983.0554 6.814855 1897 2206 2592 2793 2908 3047 3288 3298 4437 4559 0.4053590 0.4082616
187 463887.6 5805244 0.73 6.4 3.7 59.63 0.1075006 394.53528 1010.8559 6.766841 1952 2210 2632 2786 2884 3040 3226 3246 4358 4461 0.4038594 0.4082268
188 463912.6 5805288 0.83 6.4 4.2 58.64 0.1037502 373.41155 1033.7985 6.662338 1878 2164 2550 2852 2983 3120 3188 3294 4408 4542 0.4498607 0.4358621
189 463887.6 5805331 0.74 5.3 2.1 58.83 0.1925011 515.52662 1058.4789 6.517938 1956 2224 2708 2829 2904 3058 3448 3318 4420 4503 0.4638254 0.4643287
190 463912.6 5805374 0.83 6.1 3.9 60.22 0.0887499 142.73193 1155.0911 6.483220 1917 2224 2628 2851 2982 3122 3340 3314 4303 4393 0.4372598 0.4291411
191 463975.3 5805031 0.77 7.0 4.9 58.51 0.2012501 252.30026 1026.4099 6.688603 1854 2084 2458 2651 2789 2927 3062 3100 4292 4374 0.4170821 0.4166113
192 463937.6 5805064 0.95 5.8 4.1 59.27 0.0937505 245.97847 1021.4856 6.698418 1822 2044 2456 2614 2740 2894 3100 3086 4278 4312 0.4251285 0.4251285
193 463962.6 5805115 0.83 6.2 3.1 59.33 0.2399988 345.63455 991.9399 6.695840 1855 2080 2488 2702 2843 2962 3088 3177 4393 4481 0.4190828 0.4168421
194 463937.6 5805158 0.86 5.9 4.4 60.73 0.1349993 400.43720 978.7504 6.769126 1925 2156 2562 2787 2846 3019 3214 3207 4408 4512 0.4299279 0.4296765
195 463962.6 5805201 0.83 6.2 5.2 60.76 0.0437503 275.97630 1015.8449 6.786711 1921 2202 2610 2795 2875 3034 3256 3207 4408 4469 0.4108081 0.4148828
196 463937.6 5805244 0.72 5.9 3.4 60.81 0.0475011 357.05976 976.2837 6.792520 1896 2194 2598 2761 2886 3011 3190 3193 4384 4493 0.3981107 0.3924731
197 463962.6 5805288 0.88 6.5 5.1 58.84 0.0587506 343.48586 1044.3695 6.713204 1946 2234 2632 2904 3014 3167 3316 3383 4533 4585 0.4737756 0.4588276
198 463937.6 5805331 0.7 5.8 4.4 59.58 0.1212497 327.93896 1102.7830 6.578186 2008 2304 2738 2933 3075 3192 3422 3371 4494 4573 0.4738929 0.4599018
199 463962.6 5805374 0.72 6.2 3.9 58.84 0.1487503 257.03497 1188.7334 6.556452 1964 2276 2684 2916 3041 3187 3398 3409 4393 4450 0.5341923 0.5164082
200 464034.3 5805004 0.81 6.0 2.9 56.99 0.1774998 424.93683 990.0257 6.715249 1847 2068 2482 2646 2745 2942 3164 3139 4384 4441 0.4824713 0.4613358
201 464019.1 5805041 0.77 5.6 1.2 56.87 0.1762495 417.96169 991.0215 6.679208 1842 2096 2474 2635 2725 2900 3126 3099 4305 4406 0.4539204 0.4411812
202 463987.6 5805071 0.91 6.3 2.7 57.13 0.1562490 360.01053 1010.8574 6.664298 1830 2086 2472 2641 2743 2905 3108 3103 4343 4446 0.4460271 0.4281356
203 464012.6 5805115 0.75 5.8 1.7 58.24 0.3374982 285.61343 970.9984 6.657176 1898 2166 2592 2790 2885 3020 3264 3221 4466 4587 0.4619094 0.4356061
204 463987.6 5805158 0.72 6.1 2.9 61.34 0.1050005 199.81694 1015.1021 6.700363 1864 2092 2478 2719 2828 2969 3132 3163 4368 4420 0.3934222 0.3909494
205 464012.6 5805201 0.8 6.0 3.6 60.50 0.0325003 342.64073 1000.2086 6.727779 1880 2136 2548 2699 2807 2941 3188 3133 4360 4409 0.4586218 0.4394013
206 463987.6 5805244 0.89 6.0 2.8 59.58 0.1787491 488.49277 977.7148 6.759600 1850 2116 2524 2744 2890 3009 3190 3223 4415 4473 0.4168421 0.4109015
207 464012.6 5805288 0.77 5.8 3.2 57.98 0.0737500 308.09603 1055.0146 6.742199 1884 2164 2572 2824 2937 3067 3242 3300 4459 4494 0.4545455 0.4445777
208 463987.6 5805331 0.77 6.2 4.2 57.81 0.1137490 479.51302 1102.3564 6.648838 1979 2260 2676 2907 3045 3162 3374 3385 4523 4621 0.5206280 0.4934383
209 464012.6 5805374 0.83 6.4 5.4 57.24 0.0562491 198.17961 1216.9202 6.596526 1950 2194 2622 2904 3028 3218 3364 3416 4428 4444 0.5384109 0.5115565
210 464089.2 5804977 0.8 6.1 1.3 56.20 0.2237501 327.88069 988.3234 6.778899 1880 2154 2516 2724 2841 2999 3176 3246 4394 4479 0.4527814 0.4425177
211 464068.0 5805009 1 5.8 3.4 55.76 0.2512498 551.46433 1000.5587 6.731104 1854 2128 2522 2721 2841 2979 3204 3203 4399 4492 0.4858803 0.4636783
212 464069.1 5805041 1.01 6.2 3.7 55.12 0.1337504 451.80082 980.9917 6.708382 1820 2080 2440 2630 2726 2882 3042 3099 4319 4427 0.4244018 0.4253693
213 464037.6 5805071 0.74 6.5 1.9 56.19 0.1412501 391.30796 996.7293 6.664606 1814 2072 2444 2679 2792 2914 3054 3166 4408 4521 0.4322217 0.4171729
214 464062.6 5805115 0.78 6.6 1.6 58.57 0.5174994 229.82101 1029.8847 6.668668 1876 2178 2608 2807 2867 3014 3304 3232 4452 4553 0.4528302 0.4303406
215 464037.6 5805158 0.83 6.1 4.2 61.40 0.1574998 288.43205 1026.8307 6.653582 1802 2078 2426 2750 2833 2977 3042 3174 4333 4413 0.4764222 0.4587962
216 464062.6 5805201 0.41 7.1 2.0 61.56 0.2199998 415.93423 938.3535 6.675773 1908 2216 2650 2781 2887 3032 3292 3234 4444 4538 0.4218009 0.4182162
217 464037.6 5805244 0.78 6.3 3.7 58.78 0.1275005 431.10081 996.9637 6.708865 1855 2128 2506 2730 2823 2966 3148 3202 4382 4424 0.4436484 0.4299065
218 464062.6 5805288 0.87 6.3 4.2 57.41 0.1050000 329.45758 1050.6372 6.665808 1882 2138 2578 2817 2914 3039 3220 3284 4424 4485 0.4761354 0.4587890
219 464037.6 5805331 1.13 6.2 5.4 57.00 0.0312495 385.17797 1149.2864 6.650809 1914 2170 2596 2790 2920 3072 3298 3302 4440 4444 0.5281809 0.4998344
220 464062.6 5805374 0.91 6.5 5.2 56.59 0.1274991 276.60510 1254.4428 6.594189 1933 2230 2642 2817 2984 3122 3376 3349 4429 4447 0.5592105 0.5206930
221 464118.0 5805009 1.12 6.0 3.5 54.46 0.0812497 426.90570 999.9900 6.786303 1824 2012 2382 2564 2707 2831 3054 3036 4182 4243 0.4788877 0.4534413
222 464119.1 5805041 1.13 6.4 3.4 54.62 0.1512504 272.63562 983.3468 6.768493 1814 2066 2428 2703 2783 2936 3058 3134 4359 4483 0.4162402 0.4135876
223 464087.6 5805071 0.74 6.3 3.5 56.50 0.4562502 277.89785 969.9704 6.707753 1844 2094 2458 2665 2807 2926 3120 3113 4366 4475 0.4104316 0.4149114
224 464112.6 5805115 0.74 6.3 1.9 60.34 0.2562499 282.40738 959.8622 6.718361 1850 2108 2510 2755 2843 2997 3162 3208 4462 4554 0.3819232 0.3997591
225 464087.6 5805158 0.75 6.9 4.4 62.57 0.1012492 356.51029 958.5397 6.666695 1869 2136 2532 2768 2851 3029 3134 3202 4385 4516 0.3868950 0.3972466
226 464112.6 5805201 0.85 6.4 4.0 60.60 0.3674994 291.23382 1000.4743 6.664922 1852 2104 2478 2639 2730 2886 3082 3093 4234 4284 0.4798511 0.4535050
227 464087.6 5805244 0.84 5.8 2.9 58.21 0.0787497 486.30881 985.0688 6.668058 1858 2114 2556 2735 2852 3001 3176 3216 4415 4496 0.4517863 0.4309754
228 464112.6 5805288 0.83 5.8 6.0 56.96 0.0062504 499.28811 1066.0815 6.629854 1888 2120 2538 2872 3000 3137 3264 3358 4534 4620 0.5245331 0.4975124
229 464087.6 5805331 0.77 6.3 3.3 56.86 0.0637503 170.04909 1157.8106 6.615912 1974 2266 2678 2890 2995 3161 3392 3379 4479 4503 0.5129534 0.4893210
230 464112.6 5805374 0.81 6.4 4.7 55.64 0.1637497 334.43002 1251.0390 6.611192 1975 2252 2710 2901 3071 3200 3464 3415 4527 4543 0.5616354 0.5255255
231 464158.8 5805050 1.5 6.3 4.3 54.51 0.1124997 314.95652 960.0629 6.810427 1791 2036 2408 2664 2781 2927 3042 3148 4353 4436 0.3883983 0.3971075
232 464144.1 5805084 0.79 6.4 5.3 57.71 0.4625006 251.66512 962.9398 6.775894 1918 2166 2604 2758 2899 3024 3266 3243 4509 4591 0.3787448 0.3986418
233 464162.6 5805115 0.88 6.6 3.7 59.29 0.4000001 271.05057 976.3329 6.777590 1879 2176 2598 2838 2924 3076 3272 3287 4502 4609 0.3638778 0.3859649
234 464137.6 5805158 0.73 6.1 3.8 62.55 0.2262506 405.15755 960.6414 6.706226 1884 2174 2568 2769 2875 2989 3242 3214 4397 4496 0.4119967 0.4159525
235 464162.6 5805201 0.65 6.3 4.6 60.03 0.1875005 354.17928 1035.1585 6.698100 1833 2072 2436 2642 2760 2898 3094 3055 4192 4305 0.4475643 0.4327808
236 464137.6 5805244 0.9 6.3 3.9 58.00 0.0825005 388.72864 1018.7238 6.645541 1838 2134 2520 2743 2846 3007 3164 3213 4377 4465 0.4618776 0.4416358
237 464162.6 5805288 0.76 5.9 4.6 57.30 0.0500002 350.80516 1049.7547 6.648909 1864 2134 2546 2833 2967 3121 3244 3308 4480 4547 0.4875160 0.4643138
238 464137.6 5805331 0.72 6.3 4.4 56.17 0.1375008 212.22940 1178.4769 6.630773 1938 2222 2662 2878 2984 3183 3402 3388 4532 4512 0.5114504 0.4882651
239 464162.6 5805374 0.81 6.3 3.7 54.83 0.2125006 308.91472 1221.4945 6.658026 1950 2230 2600 2851 3015 3200 3398 3412 4467 4432 0.5622607 0.5246637
240 464201.5 5805101 0.68 7.0 2.7 58.17 0.2700005 208.16758 1022.7004 6.848679 1867 2198 2596 2682 2781 2928 3278 3111 4275 4389 0.3705499 0.3856032
241 464222.7 5805137 0.82 6.6 3.5 58.59 0.1412501 314.00298 986.2434 6.838198 1826 2064 2462 2634 2728 2876 3094 3075 4226 4302 0.4196819 0.4137511
242 464187.6 5805158 0.84 6.4 4.5 60.26 0.2512507 320.40348 986.7638 6.766054 1808 2082 2442 2709 2805 2939 3068 3130 4276 4364 0.4121888 0.4155911
243 464212.6 5805201 0.72 7.1 3.6 60.86 0.1875000 217.42829 1042.2177 6.749089 1830 2086 2424 2615 2737 2857 3050 3036 4150 4224 0.4426685 0.4277854
244 464187.6 5805244 0.72 6.1 3.9 59.05 0.0599999 199.94842 1047.4144 6.686224 1885 2156 2528 2736 2841 3004 3182 3199 4331 4438 0.4497702 0.4473943
245 464212.6 5805288 0.61 5.9 4.6 57.15 0.0962486 423.06156 1054.0783 6.717050 1867 2128 2534 2800 2908 3106 3248 3322 4461 4538 0.4978723 0.4768436
246 464187.6 5805331 0.78 6.0 4.0 55.83 0.1250000 344.29574 1106.2357 6.684262 1946 2236 2646 2835 2954 3144 3370 3348 4441 4492 0.5449984 0.5078806
247 464212.6 5805374 0.82 6.4 5.2 53.99 0.2562499 329.43684 1228.8529 6.729391 1993 2252 2664 2875 3029 3178 3416 3408 4398 4437 0.5769871 0.5369633
248 464237.6 5805244 0.86 6.4 3.6 58.65 0.2174997 278.47450 1030.9561 6.759171 1870 2106 2490 2720 2812 2994 3156 3222 4330 4386 0.4136808 0.4064472
249 464237.6 5805331 0.82 5.7 4.6 55.27 0.1799998 265.54026 1130.9986 6.760402 1942 2210 2612 2824 2981 3126 3358 3336 4433 4449 0.5554524 0.5149141
250 463528.0 5804749 0.71 6.0 2.7 64.23 0.2837496 349.27214 1113.9435 6.742702 1950 2216 2648 2799 2909 3092 3364 3301 4475 4532 0.5102659 0.4833058

(Source of data: Schmidinger et al. (2025) “LimeSoDa: A Dataset Collection for Benchmarking of Machine Learning Regressors in Digital Soil Mapping”)

20.4.3 Build the regression tree

The model is fitted as follows:

# Example formula predicting soil organic carbon from some covariates
SOC_formula <- SOC_target ~ x_25833 + y_25833 + Altitude + Slope + 
                        ERa + G_Total_Counts + NDVI + GNDVI

rtree_soc_model <- rpart( 
    formula = SOC_formula, 
    data = BB.250, 
    method = "anova" 
)

20.4.4 Plot the tree

rpart.plot( rtree_soc_model, 
            type = 2, 
            fallen.leaves = TRUE, 
            extra = 101,
            main = "Regression Tree per SOC"
)

This produces a visual representation of the tree structure, showing the splitting rules at each node, the number of observations, and the predicted value in each leaf.

20.4.5 How to interpret the regression tree model

The regression tree divides the dataset into smaller groups based on a series of simple rules. Each rule is a question about one variable — for example:

“Is ERa (Apparent Electrical Resistivity) less than 80.88?”

At each step, the data is split into two branches, forming a “tree” structure where:
  • Each internal node contains a decision rule (called a split).
  • Each leaf node (or terminal node) provides a predicted value — the average of the SOC_target values within that group.

20.4.5.1 Example from the fitted model

The first split (at the top of the tree) is:

  • ERa < 80.88
This means ERa is the most important variable for predicting SOC — it creates the largest reduction in prediction error.
  • If a data point has ERa < 80.88, it goes to the right branch, where the average SOC is about 2.09.
  • Otherwise, it goes to the left branch, with a lower SOC average around 0.88.
  • From there, the tree continues to split the data further — based on NDVI, GNDVI, and Altitude — refining the prediction at each step.

20.4.5.2 Which variables matter most?

The model tells us which variables were most important:

# Normalize and plot variable importance
imp <- rtree_soc_model$variable.importance
imp_norm <- imp / sum(imp)

barplot(imp_norm,
        las = 2, col = "sienna",
        main = "Normalized Variable Importance",
        ylab = "Proportion")

This means that soil electrical resistivity (ERa), vegetation indices (NDVI and GNDVI), and altitude are the most influential in predicting SOC.

20.4.6 Predict

20.4.6.1 Predict SOC using the regression tree

BB.250$SOC_pred <- predict(rtree_soc_model, newdata = BB.250)

20.4.6.2 Calculate residuals

BB.250$SOC_resid <- BB.250$SOC_target - BB.250$SOC_pred

20.4.6.3 Plots

20.4.7 Model performance

20.4.7.1 Plot residuals vs predicted values

plot(BB.250$SOC_pred, BB.250$SOC_resid,
     xlab = "Predicted SOC", ylab = "Residuals",
     main = "Residuals vs Predicted SOC")
abline(h = 0, lty = 2, col = "gray")

20.4.7.2 Compute RMSE

library(Metrics)
rmse(BB.250$SOC_target, BB.250$SOC_pred)
#> [1] 0.1884712

20.4.8 In summary

  • Each split makes the model more precise, dividing the data into smaller and more homogeneous groups.
  • The final prediction for a location is simply the average SOC of the group (leaf) where it ends up.
  • The tree helps us understand how SOC varies based on measurable factors like ERa or NDVI.

This makes regression trees very useful not only for prediction, but also for interpreting which variables matter, and how they interact in real-world data.

20.5 Model validation

Once a regression tree is fitted, it is essential to evaluate how well it performs on unseen data. This allows us to estimate its ability to generalize — that is, to make accurate predictions at locations or times that were not used to train the model.

20.5.1 Cross-validation

Cross-validation (CV) is a common and effective way to assess model performance. Instead of relying on a single split between training and validation data, CV systematically partitions the data into subsets (called folds) and rotates them through training and validation roles.

See the section Spatial Cross-Validation.

20.5.2 Performance metrics

The most common metrics to assess regression performance are:
  • RMSE (Root Mean Squared Error): penalizes large errors and is sensitive to outliers.
  • MAE (Mean Absolute Error): provides a more robust measure of average error magnitude.

They can be computed as:

\[ \text{RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n (z_i - \hat{z}i)^2 } \qquad \text{MAE} = \frac{1}{n} \sum{i=1}^n |z_i - \hat{z}_i| \]

where \(z_i\) is the observed value and \(\hat{z}_i\) is the predicted value for location i.

In R, these metrics can be calculated using the Metrics package or custom functions (as shown in previous chapters).

20.5.3 Comparing models

Once a performance measure is defined, it becomes possible to compare the regression tree to other models:
  • Null model: predicts the global average (baseline).
  • Linear regression: models the target as a linear combination of covariates.
  • Other interpolators: e.g., nearest neighbour(s), IDW, kriging.

A table summarizing RMSE or MAE values across models can guide model selection.

20.6 Extension to the spatial context

Regression trees are not inherently spatial models. They do not exploit the geographic location of observations unless it is explicitly included as a predictor. Therefore, when applied to spatial data, a regression tree behaves as a “stepwise interpolator” — creating sharp boundaries in space where predictions change abruptly from one region to another.

Zinc concentration map from the Meuse dataset illustrating sharp transitions typical of regression tree-based spatial predictions.

Figure 20.3: Zinc concentration map from the Meuse dataset illustrating sharp transitions typical of regression tree-based spatial predictions.

This leads to predictions that are not spatially continuous, unlike geostatistical methods (e.g. kriging), which produce smooth surfaces and account for spatial autocorrelation.

20.6.1 Strengths and limitations in spatial settings

Using regression trees in spatial applications has both advantages and drawbacks:

Table 20.2: Table 20.3: Strengths and Limitations of Regression Trees in Spatial Contexts
Strengths Limitations
Can handle complex, non-linear relationships No spatial continuity in predictions
Works well with many predictors, including categorical ones Does not account for spatial autocorrelation
Robust to outliers and missing data Can create unrealistic step boundaries in space
Interpretable and easy to visualize Sensitive to overfitting if not pruned

In many environmental and ecological applications, spatial structure matters — variables measured at nearby locations tend to be similar (spatial autocorrelation). Ignoring this may reduce prediction accuracy or generate artifacts in mapped outputs.

20.6.2 Making trees spatially aware: possible strategies

Several strategies can be used to adapt regression trees for spatial prediction.

20.6.2.1 Use coordinates as predictors

The simplest way to introduce spatial awareness is to include X and Y coordinates as explanatory variables:

SOC_target ~ x_25833 + y_25833 + NDVI + ERa + …

This allows the tree to “learn” spatial patterns — for example, to create splits based on longitude or latitude ranges — but it is still limited. The tree learns spatial structure indirectly and may overfit specific locations without modeling smooth transitions.

20.6.2.2 Residual kriging

A more rigorous approach is to combine regression trees with geostatistics. The idea is to:
  1. Fit a regression tree to model the deterministic trend.
  2. Compute the residuals between observed and predicted values.
  3. Apply kriging to interpolate the residuals based on spatial autocorrelation.
  4. Add the kriged residuals back to the tree predictions.

This hybrid method — often called regression kriging — combines the flexibility of machine learning with the smoothness and spatial coherence of geostatistics.

20.6.2.3 Random Forest and ensembles

Random forest is an ensemble method that builds many regression trees and averages their predictions. It generally improves accuracy and reduces overfitting. While still not explicitly spatial, a random forest can better capture complex spatial patterns when coordinates and spatial covariates are included.

In practice, random forests can be paired with residual kriging in the same way as single trees, creating a powerful spatial prediction framework.

See the section Random Forests for more details.